Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems

被引:2
|
作者
Li, Jian [1 ]
Luczak, Susan E. [2 ]
Rosen, I. G. [3 ]
机构
[1] Univ Southern Calif, Dept Elect Engn Syst, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Dept Psychol, Los Angeles, CA USA
[3] Univ Southern Calif, Dept Math, Modeling & Simulat Lab, Los Angeles, CA USA
来源
关键词
Distributed parameter systems; system identification; filtering; blind deconvolution; transdermal alcohol biosensor; INFINITE DIMENSIONAL SYSTEMS; BLOOD-ALCOHOL CONCENTRATION; UNBOUNDED INPUT; BLIND DECONVOLUTION; DRINKING; OUTPUT;
D O I
10.1515/jiip-2018-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three methods for the estimation of blood or breath alcohol concentration (BAC/BrAC) from biosensor measured transdermal alcohol concentration (TAC) are evaluated and compared. Specifically, we consider a system identification/quasi-blind deconvolution scheme based on a distributed parameter model with unbounded input and output for ethanol transport in the skin and compare it to two more conventional system identification and filtering/deconvolution techniques for ill-posed inverse problems, one based on frequency domain methods and the other on a time series approach using an ARMA input/output model. Our basis for comparison are five statistical measures of interest to alcohol researchers and clinicians: peak BAC/BrAC, time of peak BAC/BrAC, the ascending and descending slopes of the BAC/BrAC curve, and the area underneath the BAC/BrAC curve.
引用
收藏
页码:703 / 717
页数:15
相关论文
共 50 条
  • [1] System identification and model-based control for distributed parameter systems
    Zheng, D
    Hoo, KA
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) : 1361 - 1375
  • [2] An Event-Based Approach for Model-Based Control and Parameter Identification in Networked Distributed Processes
    Zedan, Amr
    El-Farra, Nael H.
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 3425 - 3430
  • [3] Mathematical aspects of inverse problems, model calibration, and parameter identification
    Hornung, U
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 1996, 183 (1-2) : 17 - 23
  • [4] Master–slave model-based parallel chaos optimization algorithm for parameter identification problems
    Xiaofang Yuan
    Ting Zhang
    Xiangshan Dai
    Lianghong Wu
    [J]. Nonlinear Dynamics, 2016, 83 : 1727 - 1741
  • [5] A linearization technique and error estimates for distributed parameter identification in quasilinear problems
    Karkkainen, T
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (3-4) : 345 - 364
  • [6] A model-based approach to the forward and inverse problems in spirometry
    Polak, Adam G.
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2008, 28 (01) : 41 - 57
  • [7] Model-based parameter identification of a fluid power component
    Manhartsgruber, B
    Mikota, J
    [J]. POWER TRANSMISSION AND MOTION CONTROL, 2002, : 229 - 244
  • [8] Inverse problems in geographical economics: parameter identification in the spatial Solow model
    Engbers, Ralf
    Burger, Martin
    Capasso, Vincenzo
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2028):
  • [9] Master-slave model-based parallel chaos optimization algorithm for parameter identification problems
    Yuan, Xiaofang
    Zhang, Ting
    Dai, Xiangshan
    Wu, Lianghong
    [J]. NONLINEAR DYNAMICS, 2016, 83 (03) : 1727 - 1741
  • [10] MoDL: Model-Based Deep Learning Architecture for Inverse Problems
    Aggarwal, Hemant K.
    Mani, Merry P.
    Jacob, Mathews
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 394 - 405