Activated chitosan microspheres as air cathode catalyst for high power production in microbial fuel cells

被引:0
|
作者
Zeng Ke [1 ]
Yuan Ming [1 ]
An Zhihao [1 ]
Ma Jingying [1 ]
Zhang Wenwen [1 ]
Chen Donghui [1 ]
机构
[1] Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 200235, Peoples R China
关键词
chitosan microspheres; electrochemical; microbial fuel cell; KOH; activation;
D O I
10.1088/2053-1591/abf460
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study aimed to modify chitosan microspheres to have large specific surface area as cathode catalysts in microbial fuel cell. Nitrogen-rich chitosan microspheres were first prepared and were used as precursors to prepare the activated carbon materials. The activation effects of KOH and activation temperature on the graphitization degree, specific surface area and electrochemical performance were investigated. The materials were characterised through various microscopic analyses and the electrochemical properties of the materials as cathode catalyst were also investigated. Before and after the activation, the materials remained in microspheric morphology, shown by SEM measurement, while the specific surface area of the activated material increased significantly and reached 1562 m(2)g(-1) measured by BET. The graphitization degree of the material showed synchronized increase with calcination temperature, which was detected by Raman spectroscopy. The materials activated were rich in nitrogen, revealed by XPS for elemental analysis. When activated at the temperature of 850 degrees C, the material demonstrated lower internal resistance (0.6 omega cm(-2)), higher alternating current density (24.27 x 10(-4) Acm(-2)) and the highest power density (1531 51 mWm(-2)) which was 1.4 times that of the original carbon felt. It was illustrated by the electrochemical tests that the material prepared from the precursor chitosan microspheres as cathode catalyst has the high activity of oxygen reduction reaction in MFCs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells
    Liu, Yi
    Zhao, Yong
    Li, Kexun
    Wang, Zhong
    Tian, Pei
    Liu, Di
    Yang, Tingting
    Wang, Junjie
    [J]. JOURNAL OF POWER SOURCES, 2018, 378 : 1 - 9
  • [2] The performance of phosphorus (P)-doped activated carbon as a catalyst in air-cathode microbial fuel cells
    Chen, Zhihao
    Li, Kexun
    Pu, Liangtao
    [J]. BIORESOURCE TECHNOLOGY, 2014, 170 : 379 - 384
  • [3] Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells
    Pan, Yajun
    Mo, Xiaoping
    Li, Kexun
    Pu, Liangtao
    Liu, Di
    Yang, Tingting
    [J]. BIORESOURCE TECHNOLOGY, 2016, 206 : 285 - 289
  • [4] The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells
    Liu, Yunting
    Li, Kexun
    Liu, Yi
    Pu, Liangtao
    Chen, Zhihao
    Deng, Shuguang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) : 21149 - 21158
  • [5] A novel and high performance activated carbon air-cathode with decreased volume density and catalyst layer invasion for microbial fuel cells
    Zhang, Yueyong
    Wang, Xin
    Li, Xiaojing
    Gao, Ningshengjie
    Wan, Lili
    Feng, Cuijuan
    Zhou, Qixing
    [J]. RSC ADVANCES, 2014, 4 (80): : 42577 - 42580
  • [6] Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
    Logan, Bruce
    Cheng, Shaoan
    Watson, Valerie
    Estadt, Garett
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) : 3341 - 3346
  • [7] Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells
    Xia, Xue
    Zhang, Fang
    Zhang, Xiaoyuan
    Liang, Peng
    Huang, Xia
    Logan, Bruce E.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (16) : 7862 - 7866
  • [8] Activated carbon-supported multi-doped graphene as high-efficient catalyst to modify air cathode in microbial fuel cells
    Lv, Cuicui
    Liang, Bolong
    Zhong, Ming
    Li, Kexun
    Qi, Yongying
    [J]. ELECTROCHIMICA ACTA, 2019, 304 : 360 - 369
  • [9] Dual functions of activated carbon air-cathode: Nitrobenzene removal and electricity production in microbial fuel cells
    Zuo, Zhifang
    Huang, Ting
    Zhu, Xiaoting
    Jia, Xiaoyu
    Zhang, Enren
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (07): : 3710 - 3718
  • [10] N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells
    Zhang, Xi
    Li, Kexun
    Yan, Pengyu
    Liu, Ziqi
    Pu, Liangtao
    [J]. BIORESOURCE TECHNOLOGY, 2015, 187 : 299 - 304