Parameter estimation of PEMFC based on Improved Fluid Search Optimization Algorithm

被引:40
|
作者
Qin, Fuzhen [1 ]
Liu, Peixue [1 ]
Niu, Haichun [1 ]
Song, Haiyan [1 ]
Yousefi, Nasser [2 ]
机构
[1] Qingdao Huanghai Univ, Sch Intelligent Mfg, Qingdao 400427, Shandong, Peoples R China
[2] Islamic Azad Univ, Karaj Branch, Karaj, Iran
关键词
Parameter estimation; Proton exchange membrane fuel; The sum of square error; Improved fluid search optimization algorithm; MEMBRANE FUEL-CELLS; FEATURE-SELECTION; FORECAST ENGINE; IDENTIFICATION; PREDICTION; VARIABLES; MODELS; HEAT;
D O I
10.1016/j.egyr.2020.05.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a new optimal method for model estimation of the unknown parameters of circuit-based proton exchange membrane fuel cells (PEMFCs). The main idea is to minimize the sum of squared error (SSE) value between the actual data and the estimated results. The optimization process here is based on an Improved Fluid Search Optimization Algorithm (IFSO). For verification of the suggested method, it is applied to three practical case studies including Horizon H-12 stacks, NedStack PS6, and Ballard Mark V 5 kW under different operating conditions with temperature variations between 30 degrees C and 55 degrees C and pressure variations between 1.0/1.0 Bar and 3.0/3.0 Bar. The results of these case studies are also compared with CGOA, MRFO, and basic FSO algorithm to show the proposed method's effectiveness. The results show that the minimum value of SSE among different algorithms is 0.7845, 2.15, and 0.084, respectively that are reached by the suggested IFSO algorithm. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1224 / 1232
页数:9
相关论文
共 50 条
  • [1] Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm
    Guo, Haibing
    Tao, Hai
    Salih, Sinan Q.
    Yaseen, Zaher Mundher
    [J]. ENERGY REPORTS, 2020, 6 : 1510 - 1519
  • [2] Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms
    Mossa, Mahmoud A.
    Kamel, Omar Makram
    Sultan, Hamdy M.
    Diab, Ahmed A. Zaki
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (11): : 5555 - 5570
  • [3] Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
    Mossa, Mahmoud A.
    Kamel, Omar Makram
    Sultan, Hamdy M.
    Diab, Ahmed A. Zaki
    [J]. Neural Computing and Applications, 2021, 33 (11) : 5555 - 5570
  • [4] Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
    Mahmoud A. Mossa
    Omar Makram Kamel
    Hamdy M. Sultan
    Ahmed A. Zaki Diab
    [J]. Neural Computing and Applications, 2021, 33 : 5555 - 5570
  • [5] Parameter Optimization of Washout Algorithm Based on Improved Sparrow Search Algorithm
    Zhao, Li
    Shi, Hu
    Zhao, Wan-Ting
    Li, Qing-Hua
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2024, 19 (08) : 864 - 873
  • [6] An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation
    Wang, Jun
    Zhou, Bihua
    Zhou, Shudao
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [7] PEM fuel cells model parameter identification based on a new improved fluid search optimization algorithm
    Cao, Yan
    Kou, Xiaoxi
    Wu, Yujia
    Jermsittiparsert, Kittisak
    Yildizbasi, Abdullah
    [J]. ENERGY REPORTS, 2020, 6 : 813 - 823
  • [8] Parameter Estimation of Weibull Mixtures Based on Improved Cuckoo Search Algorithm
    Chi, Kuo
    Kang, Jian-She
    Wang, Guang-yan
    Yang, Rui-feng
    [J]. 2016 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHENGDU), 2016,
  • [9] Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model
    Chen, Yang
    Pi, Dechang
    Wang, Bi
    Chen, Junfu
    Xu, Yue
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 196
  • [10] Parameter Optimization of PEMFC with Genetic Algorithm
    Bhatt, Puja
    Agarwal, Neha
    Chakraborty, Uday K.
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2016, 12 (03) : 241 - 249