Reinforcing Recommendation Using Implicit Negative Feedback

被引:0
|
作者
Lee, Danielle H. [1 ]
Brusilovsky, Peter [1 ]
机构
[1] Univ Pittsburgh, Sch Informat Sci, Pittsburgh, PA 15260 USA
关键词
Negative preference; implicit feedback; recommendation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems have explored a range of implicit feedback approaches to capture users' current interests and preferences without intervention of users' work. However, current research focuses mostly on implicit positive feedback. Implicit negative feedback is still a challenge because users mainly target information they want. There have been few studies assessing the value of negative implicit feedback. In this paper, we explore a specific approach to employ implicit negative feedback and assess whether it can be used to improve recommendation quality.
引用
收藏
页码:422 / 427
页数:6
相关论文
共 50 条
  • [1] Generalized Negative Sampling for Implicit Feedback in Recommendation
    Yamanaka, Yuki
    Sugiyama, Kazunari
    [J]. 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021), 2021, : 544 - 549
  • [2] Denoising Implicit Feedback for Recommendation
    Wang, Wenjie
    Feng, Fuli
    He, Xiangnan
    Nie, Liqiang
    Chua, Tat-Seng
    [J]. WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 373 - 381
  • [3] Implicit Feedback Mining for Recommendation
    Song, Yan
    Yang, Ping
    Zhang, Chunhong
    Ji, Yang
    [J]. BIG DATA COMPUTING AND COMMUNICATIONS, 2015, 9196 : 373 - 385
  • [4] Peer recommendation using negative relevance feedback
    Shukla, Deepika
    Chowdary, C. Ravindranath
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, 46 (04):
  • [5] Peer recommendation using negative relevance feedback
    Deepika Shukla
    C Ravindranath Chowdary
    [J]. Sādhanā, 2021, 46
  • [6] A holistic view on positive and negative implicit feedback for micro-video recommendation
    Gu, Pan
    Hu, Haiyang
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [7] DIGITAL CONTENT RECOMMENDATION SYSTEM USING IMPLICIT FEEDBACK DATA
    Wu, Gang
    Swaminathan, Viswanathan
    Mitra, Saayan
    Kumar, Ratnesh
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 2766 - 2771
  • [8] DeepGroup: Group Recommendation with Implicit Feedback
    Ghaemmaghami, Sarina Sajadi
    Salehi-Abari, Amirali
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3408 - 3412
  • [9] Boosting API Recommendation With Implicit Feedback
    Zhou, Yu
    Yang, Xinying
    Chen, Taolue
    Huang, Zhiqiu
    Ma, Xiaoxing
    Gall, Harald
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2022, 48 (06) : 2157 - 2172
  • [10] Diversified Interactive Recommendation with Implicit Feedback
    Liu, Yong
    Xiao, Yingtai
    Wu, Qiong
    Miao, Chunyan
    Zhang, Juyong
    Zhao, Binqiang
    Tang, Haihong
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4932 - 4939