Classification of equilibria and I"-convergence for the discrete Perona-Malik functional

被引:7
|
作者
Bellettini, G. [1 ,2 ]
Novaga, M. [3 ]
Paolini, M. [4 ]
Tornese, C. [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[3] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[4] Univ Cattolica Brescia, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
关键词
Nonconvex functionals; Semi-discrete schemes; Stability of equilibria; Gamma-expansion; GRADIENT FLOW;
D O I
10.1007/s10092-009-0006-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a complete classification of the stability properties of the equilibria for the semi-discrete one-dimensional Perona-Malik equation, with Dirichlet boundary conditions. We also give the I"-expansion of the corresponding discretized functionals up to the order two, as the discretization parameter goes to zero.
引用
收藏
页码:221 / 243
页数:23
相关论文
共 50 条
  • [1] Classification of equilibria and Γ-convergence for the discrete Perona-Malik functional
    G. Bellettini
    M. Novaga
    M. Paolini
    C. Tornese
    [J]. Calcolo, 2009, 46 : 221 - 243
  • [2] Convergence of discrete schemes for the Perona-Malik equation
    Bellettini, G.
    Novaga, M.
    Paolini, M.
    Tornese, C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) : 892 - 924
  • [3] The Perona-Malik paradox
    Kichenassamy, S
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) : 1328 - 1342
  • [4] Mumford-Shah functional as Γ-limit of discrete Perona-Malik energies
    Morini, M
    Negri, M
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (06): : 785 - 805
  • [5] An analysis of the Perona-Malik scheme
    Esedoglu, S
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (12) : 1442 - 1487
  • [6] Staircasing effect for minimizers of the one-dimensional discrete Perona-Malik functional
    Picenni, Nicola
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [7] GAMMA-CONVERGENCE OF CERTAIN MODIFIED PERONA-MALIK FUNCTIONALS
    Tiirola, Juha
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (04) : 1499 - 1513
  • [8] On the convexification of the Perona-Malik diffusion model
    Maiseli, Baraka Jacob
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (06) : 1283 - 1291
  • [9] Ramp preserving Perona-Malik model
    Chen, Qiang
    Montesinos, Philippe
    Sen Sun, Quan
    Xia, De Shen
    [J]. SIGNAL PROCESSING, 2010, 90 (06) : 1963 - 1975
  • [10] A regularized Perona-Malik functional: Some aspects of the gradient dynamics
    Bellettini, G
    Fusco, G
    [J]. EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 639 - 644