Solving standard quadratic optimization problems via linear, semidefinite and copositive programming

被引:156
|
作者
Bomze, IM [1 ]
De Klerk, E
机构
[1] Univ Vienna, ISDS, Vienna, Austria
[2] Delft Univ Technol, Fac Informat Technol & Syst, NL-2600 GA Delft, Netherlands
关键词
approximation algorithms; stability number; semidefinite programming; copositive cone; standard quadratic optimization; linear matrix inequalities;
D O I
10.1023/A:1020209017701
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities (LMI's). In particular, we show that our approach leads to a polynomial-time approximation scheme for the standard quadratic optimzation problem. This is an improvement on the previous complexity result by Nesterov who showed that a 2/3-approximation is always possible. Numerical examples from various applications are provided to illustrate our approach.
引用
收藏
页码:163 / 185
页数:23
相关论文
共 50 条
  • [1] Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming
    Immanuel M. Bomze
    Etienne De Klerk
    [J]. Journal of Global Optimization, 2002, 24 : 163 - 185
  • [2] On Copositive Programming and Standard Quadratic Optimization Problems
    Immanuel M. Bomze
    Mirjam Dür
    Etienne de Klerk
    Cornelis Roos
    Arie J. Quist
    Tamás Terlaky
    [J]. Journal of Global Optimization, 2000, 18 : 301 - 320
  • [3] On copositive programming and standard quadratic optimization problems
    Bomze, IM
    Dür, M
    de Klerk, E
    Roos, C
    Quist, AJ
    Terlaky, T
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (04) : 301 - 320
  • [4] Analysis of copositive optimization based linear programming bounds on standard quadratic optimization
    Sagol, Gizem
    Yildirim, E. Alper
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (01) : 37 - 59
  • [5] Analysis of copositive optimization based linear programming bounds on standard quadratic optimization
    Gizem Sağol
    E. Alper Yıldırım
    [J]. Journal of Global Optimization, 2015, 63 : 37 - 59
  • [6] Tightening a copositive relaxation for standard quadratic optimization problems
    Yong Xia
    Ruey-Lin Sheu
    Xiaoling Sun
    Duan Li
    [J]. Computational Optimization and Applications, 2013, 55 : 379 - 398
  • [7] Tightening a copositive relaxation for standard quadratic optimization problems
    Xia, Yong
    Sheu, Ruey-Lin
    Sun, Xiaoling
    Li, Duan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (02) : 379 - 398
  • [8] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    Anthony Man-Cho So
    Jiawei Zhang
    Yinyu Ye
    [J]. Mathematical Programming, 2007, 110 : 93 - 110
  • [9] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    So, AMC
    Zhang, JW
    Ye, YY
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 125 - 135
  • [10] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    So, Anthony Man-Cho
    Zhang, Jiawei
    Ye, Yinyu
    [J]. MATHEMATICAL PROGRAMMING, 2007, 110 (01) : 93 - 110