Discrimination of subtly different vegetative species via hyperspectral data

被引:0
|
作者
Mathur, A [1 ]
Bruce, LM [1 ]
Byrd, J [1 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
关键词
hyperspectral; wavelets; multivariate statistics; linear discriminant analysis; receiver operating characteristics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The authors of this paper investigate the use of hyperspectral reflectance curves for the discrimination of cogangrass (Imperata Cylindrica) from other subtly different vegetation species. Receiver operating characteristics (ROC) curves are used to determine which spectral bands should be considered as candidate features. Multivariate statistical analysis is then applied to the candidate features to determine the optimum subset of spectral bands. Linear discriminant analysis (LDA) is used to compute the optimum linear combination of the selected subset to be used as a feature for classification. Similarly, ROC analysis, multivariate statistical analysis, and LIDA are utilized to determine the most advantageous wavelet-based scalar feature for classification. Nearest-neighbor classification results show that cogongrass can be detected with an accuracy of approximate to90%.
引用
收藏
页码:805 / 807
页数:3
相关论文
共 50 条
  • [1] Comparison of the Different Classifiers in Vegetation Species Discrimination Using Hyperspectral Reflectance Data
    Yuanyong Dian
    Shenghui Fang
    Yuan Le
    Yongrong Xu
    Chonghuai Yao
    [J]. Journal of the Indian Society of Remote Sensing, 2014, 42 : 61 - 72
  • [2] Comparison of the Different Classifiers in Vegetation Species Discrimination Using Hyperspectral Reflectance Data
    Dian, Yuanyong
    Fang, Shenghui
    Le, Yuan
    Xu, Yongrong
    Yao, Chonghuai
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2014, 42 (01) : 61 - 72
  • [3] Discrimination Analysis of Corn Species Using Field Hyperspectral Data
    Sencaki, Dionysius B.
    Grace, Tiara F. L.
    Gandharum, Laju
    Cahyaningtyas, Ilvi F.
    [J]. 2019 2ND IEEE ASIA-PACIFIC CONFERENCE ON GEOSCIENCE, ELECTRONICS AND REMOTE SENSING TECHNOLOGY (AGERS): UNDERSTANDING AND FORECASTING THE DYNAMICS OF LAND, OCEAN AND MARITIME, 2019, : 37 - 42
  • [4] Discrimination of Seagrass Species and Cover Classes with in situ Hyperspectral Data
    Pu, Ruiliang
    Bell, Susan
    Baggett, Lesley
    Meyer, Cynthia
    Zhao, Yongchao
    [J]. JOURNAL OF COASTAL RESEARCH, 2012, 28 (06) : 1330 - 1344
  • [5] Plant Species Discrimination in a Tropical Wetland Using In Situ Hyperspectral Data
    Prospere, Kurt
    McLaren, Kurt
    Wilson, Byron
    [J]. REMOTE SENSING, 2014, 6 (09) : 8494 - 8523
  • [6] Eucalyptus Species Discrimination Using Hyperspectral Sensor Data and Machine Learning
    Teodoro, Larissa Pereira Ribeiro
    Estevao, Rosilene
    Santana, Dthenifer Cordeiro
    Oliveira, Izabela Cristina de
    Lopes, Maria Teresa Gomes
    Azevedo, Gileno Brito de
    Baio, Fabio Henrique Rojo
    da Silva, Carlos Antonio
    Teodoro, Paulo Eduardo
    [J]. FORESTS, 2024, 15 (01):
  • [7] Tropical mangrove species discrimination using hyperspectral data: A laboratory study
    Vaiphasa, C
    Ongsomwang, S
    Vaiphasa, T
    Skidmore, AK
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2005, 65 (1-2) : 371 - 379
  • [8] TREE SPECIES DISCRIMINATION USING CONTINUUM REMOVED AIRBORNE HYPERSPECTRAL DATA
    Odagawa, Shinya
    Okada, Kinya
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 243 - 246
  • [9] Hyperspectral data discrimination methods
    Casasent, D
    Chen, XW
    [J]. BIOLOGICAL QUALITY AND PRECISION AGRICULTURE II, 2000, 4203 : 27 - 36
  • [10] Airborne hyperspectral discrimination of tree species with different ages using discrete wavelet transform
    Ghiyamat, A.
    Shafri, H. Z. M.
    Mahdiraji, G. A.
    Ashurov, R.
    Shariff, A. R. M.
    Mansor, S.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (01) : 318 - 342