An evaluation of local interest regions for non-rigid object class recognition

被引:0
|
作者
Altun, Oguz [1 ]
Albayrak, Songul [1 ]
机构
[1] Yildiz Tech Univ, Istanbul, Turkey
关键词
Non-rigid object class recognition; Local Interest Region; EdgeLap; SURF; HarLap; HarAff; HesLap; HesAff; kAS; FAST; IBR; PCBR; Salient; MSER; DoG; ExpRand; Discriminancy; HOUGH TRANSFORM;
D O I
10.1016/j.eswa.2011.08.060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-rigid object class recognition is a challenging computer vision problem. Using descriptors extracted from local interest regions has important advantages like robustness to occlusion and photometric effects. In this work we compare different local interest region detectors for non-rigid object class recognition through the success-rate of a Generalized Hough Transform based recognition system and a database of 29 non-rigid object classes. The results of the experiments show that the Edge-Laplace (Mikolajczyk, Leibe, & Schiele, 2006; Mikolajczyk, Zisserman, & Schmid, 2003) interest region detector leads. We also evaluate interest regions based on a novel discriminancy measure we introduce. This measure compares success-rates of detectors to success-rates of our novel random region generator, ExpRand. By this respect, ExpRand attain success-rate on par with best detector, and is more discriminant than most detectors. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2335 / 2340
页数:6
相关论文
共 50 条
  • [1] The effect of rigid and non-rigid motion on object recognition
    Newell, F. N.
    Setti, A.
    [J]. PERCEPTION, 2006, 35 : 184 - 185
  • [2] A probabilistic model for object recognition, segmentation, and non-rigid correspondence
    Simon, Ian
    Seitz, Steven M.
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 346 - +
  • [3] Non-rigid Object Tracking
    Zhou, Huiyu
    Schaefer, Gerald
    [J]. PROCEEDINGS ELMAR-2010, 2010, : 101 - 104
  • [4] Non-rigid object recognition using multidimensional index geometric hashing
    Surendro, K
    Anzai, Y
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1998, E81D (08): : 901 - 908
  • [5] Object recognition and segmentation by non-rigid quasi-dense matching
    Kannala, Juho
    Rahtu, Esa
    Brandt, Sarni S.
    Heikkila, Janne
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 1006 - 1013
  • [6] Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)
    Zimmermann, Karel
    Hurych, David
    Svoboda, Tomas
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 731 - 743
  • [7] Determining optimal Malsburg Gabor kernel for efficient non-rigid object recognition
    Nam, Mi Young
    Yun, Eun Sil
    Rhee, Phill Kyu
    [J]. PROCEEDINGS OF THE FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, 2007, : 724 - 727
  • [8] Non-rigid object tracking using performance evaluation measures as feedback
    Erdem, ÇE
    Sankur, B
    Tekalp, AM
    [J]. 2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2001, : 323 - 330
  • [9] Non-rigid object alignment with a mismatch template based on exhaustive local search
    Wang, Yang
    Lucey, Simon
    Cohn, Jeffrey
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2800 - 2807
  • [10] Non-rigid object tracking in complex scenes
    Zhou, Huiyu
    Yuan, Yuan
    Zhang, Yi
    Shi, Chunmei
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (02) : 98 - 102