Using global optimization for a microparticle identification problem with noisy data

被引:9
|
作者
Bartholomew-Biggs, MC [1 ]
Ulanowski, ZJ
Zakovic, S
机构
[1] Univ Hertfordshire, Numer Optimizat Ctr, Hatfield AL10 9AB, Herts, England
[2] Univ Hertfordshire, STRC, Hatfield AL10 9AB, Herts, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
关键词
D O I
10.1007/s10898-004-1943-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We report some experience with optimization methods applied to an inverse light scattering problem for spherical, homogeneous particles. Such particles can be identified from experimental data using a least squares global optimization method. However, if there is significant noise in the data, the "best" solution may not correspond well to the "actual" particle. We suggest a way in which the original least squares solution may be improved by using a constrained optimization calculation which considers the position of peaks in the data. This approach is applied first to multi-angle data with varying amounts of artificially introduced noise and then to examples of single-particle experimental data patterns characterized by high noise levels.
引用
收藏
页码:325 / 347
页数:23
相关论文
共 50 条
  • [1] Using Global Optimization for a Microparticle Identification Problem with Noisy Data
    M. C. Bartholomew-Biggs
    Z. J. Ulanowski
    S. Zakovic
    [J]. Journal of Global Optimization, 2005, 32 : 325 - 347
  • [2] Multiscale optimization for aquifer parameter identification with noisy data
    Gomez, S
    Perez, A
    Alvarez, RM
    [J]. COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 353 - 360
  • [3] Distributed Optimization With Global Constraints Using Noisy Measurements
    Mai, Van Sy
    La, Richard J.
    Zhang, Tao
    Battou, Abdella
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 1089 - 1096
  • [4] Identification of region of attraction for global optimization problem using interval symmetric operator
    Mohd, Ismail Bin
    [J]. Applied Mathematics and Computation (New York), 2000, 110 (2-3): : 121 - 131
  • [5] Identification of region of attraction for global optimization problem using interval symmetric operator
    Bin Mohd, I
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 110 (2-3) : 121 - 131
  • [6] Inverse Optimization with Noisy Data
    Aswani, Anil
    Shen, Zuo-Jun
    Siddiq, Auyon
    [J]. OPERATIONS RESEARCH, 2018, 66 (03) : 870 - 892
  • [7] Improvement of the MVC-NMF Problem Using Particle Swarm Optimization for Mineralogical Unmixing of Noisy Hyperspectral Data
    Tohid Nouri
    Majid M. Oskouei
    Behrooz Alizadeh
    Paolo Gamba
    Andrea Marinoni
    [J]. Journal of the Indian Society of Remote Sensing, 2019, 47 : 541 - 550
  • [8] Noisy Data Set Identification
    Garcia, Luis Paulo F.
    de Carvalho, Andre C. P. L. F.
    Lorena, Ana C.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 629 - 638
  • [9] Improvement of the MVC-NMF Problem Using Particle Swarm Optimization for Mineralogical Unmixing of Noisy Hyperspectral Data
    Nouri, Tohid
    Oskouei, Majid M.
    Alizadeh, Behrooz
    Gamba, Paolo
    Marinoni, Andrea
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (04) : 541 - 550
  • [10] Identification of tall buildings using noisy wind vibration data
    Yang, JN
    Lei, Y
    [J]. ADVANCES IN STRUCTURAL DYNAMICS, VOLS I & II, 2000, 10 : 1093 - 1100