An enhanced binary dragonfly algorithm based on a V-shaped transfer function for optimization of pump scheduling program in water supply systems (case study of Iran)

被引:24
|
作者
Jafari-Asl, Jafar [1 ]
Azizyan, Gholamreza [1 ]
Monfared, Seyed Arman Hashemi [1 ]
Rashki, Mohsen [2 ]
Andrade-Campos, Antonio G. [3 ]
机构
[1] Univ Sistan & Baluchestan, Fac Engn, Dept Civil Engn, Zahedan, Iran
[2] Univ Sistan & Baluchestan, Fac Arts & Architecture, Dept Architecture Engn, Zahedan, Iran
[3] Univ Aveiro, Ctr Mech Technol & Automat, GRIDS Res Grp, Campus Univ Santiago, P-3810193 Aveiro, Portugal
关键词
Pump scheduling program; Energy cost; Transfer function; Binary dragonfly algorithm; Water supply system; ANT-COLONY OPTIMIZATION; OPERATION;
D O I
10.1016/j.engfailanal.2021.105323
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With the continual growth of population and shortage of energy resources, the optimal consumption of these resources is of particular importance. One of these energy sources is electricity, with a significant amount being used in pumping stations for water distribution systems (WDS). Determining the proper pumping schedule can make significant savings in energy consumption and particularly in costs. This study aims to present an improved population-based nature inspired optimization algorithm for pumping scheduling program in WDS. To address this issue, the binary dragonfly algorithm based on a new transfer-function coupled with the EPANET hydraulic simulation model is developed to reduce the energy consumption of pumping stations. The proposed model was firstly implemented and evaluated on a benchmark test example, then on a real water pumping station. Comparison of the proposed method and the genetic algorithm (GA), evolutionary algorithm (EA), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), and firefly (FF) was conducted on the benchmark test example, while the obtained results indicate that the proposed framework is more computationally efficient and reliable. The results of the real case study show that while considering all different constraints of the problem, the proposed model can decrease the cost of energy up to 27% in comparison with the current state of operation.
引用
收藏
页数:16
相关论文
empty
未找到相关数据