Unbiasedness in least quantile regression

被引:0
|
作者
Tasche, D [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, SCA, D-8000 Munich, Germany
关键词
least quantile; regression; unbiasedness; fisher consistency; quantile derivative; Lord's paradox;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop an abstract notion of regression which allows for a non-parametric formulation of unbiasedness. We prove then that least quantile regression is unbiased in this sense even in the heteroscedastic case if the error distribution has a continuous, symmetric, and uni-modal density. An example shows that unbiasedness may break down even for smooth and symmetric but not uni-modal error distributions. We compare these results to those for least MAD and least squares regression.
引用
收藏
页码:377 / 386
页数:10
相关论文
共 50 条
  • [1] The least trimmed quantile regression
    Neykov, N. M.
    Cizek, P.
    Filzmoser, P.
    Neytchev, P. N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1757 - 1770
  • [2] LEAST QUANTILE REGRESSION VIA MODERN OPTIMIZATION
    Bertsimas, Dimitris
    Mazumder, Rahul
    [J]. ANNALS OF STATISTICS, 2014, 42 (06): : 2494 - 2525
  • [3] Quantile regression via iterative least squares computations
    Muggeo, Vito M. R.
    Sciandra, Mariangela
    Augugliaro, Luigi
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1557 - 1569
  • [4] THE DETERMINATION OF A LEAST QUANTILE OF SQUARES REGRESSION LINE FOR ALL QUANTILES
    CARRIZOSA, E
    PLASTRIA, F
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (05) : 467 - 479
  • [5] Determination of a `least quantile of squares regression line' for all quantiles
    [J]. Computational Statistics & Data Analysis, 1995, 20 (05):
  • [6] Using Quantile and Asymmetric Least Squares Regression for Optimal Risk Adjustment
    Lorenz, Normann
    [J]. HEALTH ECONOMICS, 2017, 26 (06) : 724 - 742
  • [7] Time Domain BRS Estimation: Least Squares versus Quantile Regression
    Gouveia, S.
    Rocha, C.
    Rocha, A. P.
    Silva, M. E.
    [J]. COMPUTING IN CARDIOLOGY 2010, VOL 37, 2010, 37 : 931 - 934
  • [8] Modified Least Trimmed Quantile Regression to Overcome Effects of Leverage Points
    Midi, Habshah
    Alshaybawee, Taha
    Alshaybawee, Taha
    Alguraibawi, Mohammed
    [J]. Midi, Habshah (habshahmidi@gmail.com), 1600, Hindawi Limited, 410 Park Avenue, 15th Floor, 287 pmb, New York, NY 10022, United States (2020):
  • [9] Modified Least Trimmed Quantile Regression to Overcome Effects of Leverage Points
    Midi, Habshah
    Alshaybawee, Taha
    Alguraibawi, Mohammed
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [10] Regression shrinkage and selection via least quantile shrinkage and selection operator
    Daneshvar, Alireza
    Mousa, Golalizadeh
    [J]. PLOS ONE, 2023, 18 (02):