The coupling of Chern-Simons theory to topological gravity

被引:6
|
作者
Imbimbo, Camillo [1 ,2 ]
机构
[1] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[2] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
关键词
Chern-Simons gauge theory; Topological gravity; Topological anomalies; Batalin-Vilkovisky quantization; QUANTUM-FIELD THEORY; GAUGE-INVARIANT OPERATORS; YANG-MILLS THEORIES; MODULI SPACE; LANDAU GAUGE; RENORMALIZATION; INDEPENDENCE;
D O I
10.1016/j.nuclphysb.2009.09.022
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We couple Chern-Simons gauge theory to 3-dimensional topological gravity with the aim of investigating its quantum topological invariance. We derive the relevant BRST rules and Batalin-Vilkovisky action. Standard BRST transformations of the gauge field are modified by terms involving both its anti-field and the super-ghost of topological gravity. Beyond the obvious couplings to the metric and the gravitino, the BV action includes hitherto neglected couplings to the super-ghost. We use this result to determine the topological anomalies of certain higher ghost deformations of SU(N) Chern-Simons theory, introduced years ago by Witten. In the context of topological strings these anomalies, which generalize the familiar framing anomaly, are expected to be cancelled by couplings of the closed string sector. We show that such couplings are obtained by dressing the closed string field with topological gravity observables. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:366 / 395
页数:30
相关论文
共 50 条
  • [1] Chern-Simons theory and topological strings
    Mariño, M
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 675 - 720
  • [2] Is quantum gravity a Chern-Simons theory?
    Bonezzi, R.
    Corradini, O.
    Waldron, A.
    [J]. PHYSICAL REVIEW D, 2014, 90 (08):
  • [3] Topological gravity and Chern-Simons forms in d=4
    Catalan, P.
    Izaurieta, F.
    Salgado, P.
    Salgado, S.
    [J]. PHYSICS LETTERS B, 2015, 751 : 205 - 208
  • [4] Pure Lovelock gravity and Chern-Simons theory
    Concha, P. K.
    Durka, R.
    Inostroza, C.
    Merino, N.
    Rodriguez, E. K.
    [J]. PHYSICAL REVIEW D, 2016, 94 (02)
  • [5] Gravitational Chern-Simons, and Chern-Simons Gravity in All Dimensions
    Radu, Eugen
    Tchrakian, D. H.
    [J]. PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 753 - 759
  • [6] Even-dimensional topological gravity from Chern-Simons gravity
    Merino, N.
    Perez, A.
    Salgado, P.
    [J]. PHYSICS LETTERS B, 2009, 681 (01) : 85 - 88
  • [7] Topological entanglement of polymers and Chern-Simons field theory
    Ferrari, F
    Lazzizzera, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (08): : 1347 - 1357
  • [8] Topological five-dimensional Chern-Simons gravity theory in the canonical covariant formalism
    Zandron, OS
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (11) : 2705 - 2720
  • [9] Canonical Chern-Simons gravity
    Sarkar, Souvik
    Vaz, Cenalo
    [J]. PHYSICAL REVIEW D, 2017, 96 (02)
  • [10] Topological boundary conditions in abelian Chern-Simons theory
    Kapustin, Anton
    Saulina, Natalia
    [J]. NUCLEAR PHYSICS B, 2011, 845 (03) : 393 - 435