The hit problem for the polynomial algebra in some weight vectors

被引:9
|
作者
Sum, Nguyen [1 ]
Tin, Nguyen Khac [2 ]
机构
[1] Sai Gon Univ, Dept Math & Applicat, 273 An Duong Vuong,Dist 5, Ho Chi Minh City, Vietnam
[2] HCMC Univ Technol & Educ Ho Chi Minh City, Fac Appl Sci, 01 Vo Van Ngan, Ho Chi Minh City, Vietnam
关键词
Steenrod operation; Peterson hit problem; Polynomial algebra;
D O I
10.1016/j.topol.2020.107579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P-k := F-2[X-1, X-2, ..., X-k] be the polynomial algebra over the prime field of two elements, F-2, ink variables x(1), x(2), ..., x(k), each of degree 1. We study the hit problem, set up by Frank Peterson, of finding a minimal set of generators for P-k as a module over the mod-2 Steenrod algebra. In this paper, we extend a result in [12] on the hit problem in degree (k - 1)(2(d) - 1) with k >= 6, by explicitly computing the hit problem in some weight vectors of degree k - 1. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条