Fast Lasso Algorithm via Selective Coordinate Descent

被引:0
|
作者
Fujiwara, Yasuhiro [1 ]
Ida, Yasutoshi [1 ]
Shiokawa, Hiroaki [1 ,2 ]
Iwamura, Sotetsu [1 ]
机构
[1] NTT Software Innovat Ctr, 3-9-11 Midori Cho, Musashino, Tokyo 1808585, Japan
[2] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
REGRESSION SHRINKAGE; REGULARIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the AI community, the lasso proposed by Tibshirani is an important regression approach in finding explanatory predictors in high dimensional data. The coordinate descent algorithm is a standard approach to solve the lasso which iteratively updates weights of predictors in a round-robin style until convergence. However, it has high computation cost. This paper proposes Sling, a fast approach to the lasso. It achieves high efficiency by skipping unnecessary updates for the predictors whose weight is zero in the iterations. Sling can obtain high prediction accuracy with fewer predictors than the standard approach. Experiments show that Sling can enhance the efficiency and the effectiveness of the lasso.
引用
收藏
页码:1561 / 1567
页数:7
相关论文
共 50 条
  • [1] Coordinate descent algorithm for covariance graphical lasso
    Wang, Hao
    [J]. STATISTICS AND COMPUTING, 2014, 24 (04) : 521 - 529
  • [2] Coordinate descent algorithm for covariance graphical lasso
    Hao Wang
    [J]. Statistics and Computing, 2014, 24 : 521 - 529
  • [3] Fast block coordinate descent for sparse group lasso
    Ida Y.
    Fujiwara Y.
    Kashima H.
    [J]. Transactions of the Japanese Society for Artificial Intelligence, 2021, 36 (01) : 1 - 11
  • [4] Lasso Regularization Paths for NARMAX Models via Coordinate Descent
    Ribeiro, Antonio H.
    Aguirre, Luis A.
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 5268 - 5273
  • [5] An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso
    Lee, Seunghwan
    Kim, Sang Cheol
    Yu, Donghyeon
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (01) : 217 - 242
  • [6] An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso
    Seunghwan Lee
    Sang Cheol Kim
    Donghyeon Yu
    [J]. Computational Statistics, 2023, 38 : 217 - 242
  • [7] Coordinate descent iterations in fast affine projection algorithm
    Zakharov, Y
    Albu, F
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (05) : 353 - 356
  • [8] COORDINATE DESCENT ALGORITHMS FOR LASSO PENALIZED REGRESSION
    Wu, Tong Tong
    Lange, Kenneth
    [J]. ANNALS OF APPLIED STATISTICS, 2008, 2 (01): : 224 - 244
  • [9] A gradient descent algorithm for LASSO
    Kim, Yongdai
    Kim, Yuwon
    Kim, Jinseog
    [J]. PREDICTION AND DISCOVERY, 2007, 443 : 73 - 82
  • [10] Coordinate descent algorithm of generalized fused Lasso logistic regression for multivariate trend filtering
    Ohishi, Mineaki
    Yamamura, Mariko
    Yanagihara, Hirokazu
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (02) : 535 - 551