Variational methods for nonlinear multiparameter elliptic eigenvalue problems

被引:3
|
作者
Shibata, T
机构
[1] Div. of Math. and Info. Sciences, Fac. of Integrated Arts and Sciences, Hiroshima University
关键词
D O I
10.1088/0951-7715/10/5/016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following nonlinear multiparameter problem u ''(r) + N - 1/r u'(r) (n) Sigma(k=1)mu(k)u(r)(Pk) = lambda u(r) 0 < r < 1 u(r) > 0 0 less than or equal to r < 1 u'(0) = 0 u(1) = 0 where N greater than or equal to 3, mu = (mu(1), mu(2),...,mu(n)) is an element of R-+(n) lambda is an element of R+ are parameters and 1 < p(1) < p(2) < ... < p(n) < 1 + 4/N. We shall establish an asymptotic formula of variational eigenvalues lambda = lambda(mu, alpha) as mu(i) --> infinity by using the Ljusternik-Schnirelman theory on the L-2-sphere M-alpha, where alpha > 0 is the radius of the L-2-sphere.
引用
收藏
页码:1319 / 1329
页数:11
相关论文
共 50 条