Gene Expression Signature-Based Prediction of Lymph Node Metastasis in Patients With Endometrioid Endometrial Cancer

被引:8
|
作者
Kang, Sokbom [1 ]
Thompson, Zachary [2 ]
McClung, E. Claire [1 ]
Abdallah, Reem [3 ]
Lee, Jae K. [2 ]
Gonzalez-Bosquet, Jesus [4 ]
Wenham, Robert M. [1 ]
Chon, Hye Sook [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, Tampa, FL 33612 USA
[3] Amer Univ, Dept Obstet andGynecol, Beirut Med Ctr, Beirut, Lebanon
[4] Univ Iowa Hosp & Clin, Dept Obstet & Gynecol, Iowa City, IA 52242 USA
关键词
Cancer genomics; Endometrial cancer; Personalized medicine; Diagnosis and staging; LYMPHADENECTOMY; CARCINOMA; RISK;
D O I
10.1097/IGC.0000000000001152
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: This study aimed to develop a prediction model for lymph node metastasis using a gene expression signature in patients with endometrioid-type endometrial cancer. Methods: Newly diagnosed endometrioid-type endometrial cancer cases in which the patients had undergone lymphadenectomy during a surgical staging procedure were identified from a national dataset (N = 330). Clinical and pathologic data were extracted from patient medical records, and gene expression datasets of their tumors were used to create a 12-gene predictive model for lymph node metastasis. We used principal components analysis on a training set (n = 110) to develop multivariate logistic models to predict low-risk patients having a probability of lymph node metastasis of less than 4%. The model with the highest prediction performance was selected for an evaluation set (n = 112), which, in turn, was validated in an independent validation set (n = 108). Results: The model applied to the evaluation set showed 100% sensitivity (90% confidence interval [CI], 74%-100%) and 42% specificity (90% CI, 34%-51%), which resulted in 100% negative predictive value (90% CI, 89%-100%). In the validation set, we confirmed that the model consistently showed 100% sensitivity (90% CI, 88%-100%), 42% specificity (90% CI, 32%-50%), and 100% negative predictive value (90% CI, 88%-100%). Conclusions: Our 12-gene signaturemodel is a useful tool for the identification of patients with endometrioid-type endometrial cancer at low risk of lymph node metastasis, particularly given that it can be used to analyze histologic tissue before surgery and used to tailor surgical options.
引用
收藏
页码:260 / 266
页数:7
相关论文
共 50 条
  • [1] Gene expression signature based prediction of lymph node metastasis in patients with endometrioid endometrial cancer
    Chon, H. S.
    Kang, S.
    Lee, J. K.
    Gonzalez-Bosquet, J.
    Wenham, R. M.
    McClung, C.
    Abdallah, R.
    [J]. GYNECOLOGIC ONCOLOGY, 2017, 145 : 130 - 130
  • [2] Prediction of lymph node metastasis in patients with endometrioid endometrial cancer using expression microarray
    Bidus, MA
    Risinger, JI
    Chandramouli, GVR
    Dainty, LA
    Litzi, TJ
    Berchuck, A
    Barrett, JC
    Maxwell, GL
    [J]. CLINICAL CANCER RESEARCH, 2006, 12 (01) : 83 - 88
  • [3] Identification of a MicroRNA Signature Associated With Lymph Node Metastasis in Endometrial Endometrioid Cancer
    Fu, Kaiyou
    Li, Yanrui
    Song, Jianyuan
    Cai, Wangyu
    Wu, Wei
    Ye, Xiaohang
    Xu, Jian
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [4] PREDICTION OF PELVIC LYMPH NODE METASTASIS IN ENDOMETRIOID ENDOMETRIAL CARCINOMA
    Jaishuen, A.
    Petsuksiri, J.
    Karavanich, P.
    Achariyapota, V.
    Kuljarusnont, S.
    Inthasorn, P.
    [J]. INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2019, 29 : A328 - A328
  • [5] ESTABLISHMENT OF GENE SIGNATURE BIOMARKERS FOR IDENTIFICATION OF LYMPH NODE METASTASIS IN ENDOMETRIAL CANCER PATIENTS
    Huang, C. Y.
    Huang, H. D.
    Chang, T. H.
    [J]. INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2018, 28 : 162 - 162
  • [6] Lymph Node Metastasis in Patients With Endometrioid Endometrial Cancer: Overtreatment Is the Main Issue
    Karalok, Alper
    Turan, Taner
    Basaran, Derman
    Turkmen, Osman
    Kimyon, Gunsu Comert
    Tulunay, Gokhan
    Tasci, Tolga
    [J]. INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2017, 27 (04) : 748 - 753
  • [7] Gene Expression Signature and the Prediction of Lymph Node Metastasis in Colorectal Cancer by DNA Microarray
    Watanabe, Toshiaki
    Kobunai, Takashi
    Tanaka, Toshiaki
    Ishihara, Soichiro
    Matsuda, Keiji
    Nagawa, Hirokazu
    [J]. DISEASES OF THE COLON & RECTUM, 2009, 52 (12) : 1941 - 1948
  • [8] INTEGRATIVE MODEL FOR PREDICTION OF LYMPH NODE METASTASIS IN ENDOMETRIOID ENDOMETRIAL CARCINOMA
    Berg, H. F.
    Lu, Z.
    Myrvold, M.
    Fasmer, K. E.
    Halle, M. K.
    Westin, S. N.
    Trovik, J.
    Haldorsen, I. S.
    Mills, G. B.
    Krakstad, C.
    Werner, H. M.
    [J]. INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2019, 29 : A109 - A110
  • [9] Development of prediction models for lymph node metastasis in endometrioid endometrial carcinoma
    Hege F. Berg
    Zhenlin Ju
    Madeleine Myrvold
    Kristine E. Fasmer
    Mari K. Halle
    Erling A. Hoivik
    Shannon N. Westin
    Jone Trovik
    Ingfrid S. Haldorsen
    Gordon B. Mills
    Camilla Krakstad
    Henrica M. J. Werner
    [J]. British Journal of Cancer, 2020, 122 : 1014 - 1022
  • [10] Development of prediction models for lymph node metastasis in endometrioid endometrial carcinoma
    Berg, Hege F.
    Ju, Zhenlin
    Myrvold, Madeleine
    Fasmer, Kristine E.
    Halle, Mari K.
    Hoivik, Erling A.
    Westin, Shannon N.
    Trovik, Jone
    Haldorsen, Ingfrid S.
    Mills, Gordon B.
    Krakstad, Camilla
    Werner, Henrica M. J.
    [J]. BRITISH JOURNAL OF CANCER, 2020, 122 (07) : 1014 - 1022