Gene Expression Signature-Based Prediction of Lymph Node Metastasis in Patients With Endometrioid Endometrial Cancer
被引:8
|
作者:
Kang, Sokbom
论文数: 0引用数: 0
h-index: 0
机构:
H Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Kang, Sokbom
[1
]
Thompson, Zachary
论文数: 0引用数: 0
h-index: 0
机构:
H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, Tampa, FL 33612 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Thompson, Zachary
[2
]
McClung, E. Claire
论文数: 0引用数: 0
h-index: 0
机构:
H Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
McClung, E. Claire
[1
]
Abdallah, Reem
论文数: 0引用数: 0
h-index: 0
机构:
Amer Univ, Dept Obstet andGynecol, Beirut Med Ctr, Beirut, LebanonH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Abdallah, Reem
[3
]
Lee, Jae K.
论文数: 0引用数: 0
h-index: 0
机构:
H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, Tampa, FL 33612 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Lee, Jae K.
[2
]
Gonzalez-Bosquet, Jesus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa Hosp & Clin, Dept Obstet & Gynecol, Iowa City, IA 52242 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Gonzalez-Bosquet, Jesus
[4
]
Wenham, Robert M.
论文数: 0引用数: 0
h-index: 0
机构:
H Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Wenham, Robert M.
[1
]
Chon, Hye Sook
论文数: 0引用数: 0
h-index: 0
机构:
H Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USAH Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
Chon, Hye Sook
[1
]
机构:
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Gynecol Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, Tampa, FL 33612 USA
Cancer genomics;
Endometrial cancer;
Personalized medicine;
Diagnosis and staging;
LYMPHADENECTOMY;
CARCINOMA;
RISK;
D O I:
10.1097/IGC.0000000000001152
中图分类号:
R73 [肿瘤学];
学科分类号:
100214 ;
摘要:
Objective: This study aimed to develop a prediction model for lymph node metastasis using a gene expression signature in patients with endometrioid-type endometrial cancer. Methods: Newly diagnosed endometrioid-type endometrial cancer cases in which the patients had undergone lymphadenectomy during a surgical staging procedure were identified from a national dataset (N = 330). Clinical and pathologic data were extracted from patient medical records, and gene expression datasets of their tumors were used to create a 12-gene predictive model for lymph node metastasis. We used principal components analysis on a training set (n = 110) to develop multivariate logistic models to predict low-risk patients having a probability of lymph node metastasis of less than 4%. The model with the highest prediction performance was selected for an evaluation set (n = 112), which, in turn, was validated in an independent validation set (n = 108). Results: The model applied to the evaluation set showed 100% sensitivity (90% confidence interval [CI], 74%-100%) and 42% specificity (90% CI, 34%-51%), which resulted in 100% negative predictive value (90% CI, 89%-100%). In the validation set, we confirmed that the model consistently showed 100% sensitivity (90% CI, 88%-100%), 42% specificity (90% CI, 32%-50%), and 100% negative predictive value (90% CI, 88%-100%). Conclusions: Our 12-gene signaturemodel is a useful tool for the identification of patients with endometrioid-type endometrial cancer at low risk of lymph node metastasis, particularly given that it can be used to analyze histologic tissue before surgery and used to tailor surgical options.