In baseball, a gyroball is known as a pitched ball which has its rotation axis oriented towards the catcher, i.e., in flight direction, and therefore does not create a lift force. The purpose of this study was to clarify what effect the seams of such a rotating gyroball have on the drag force acting on the ball. Two typical seam patterns, one with two and one with four seams, were selected. First, pitching experiments were carried out to capture the trajectories of various breaking balls. From the obtained trajectories the drag coefficients were estimated. Flow visualization was applied to a heated flying gyroball with the help of the schlieren technique to investigate the flow separation area. To verify the results obtained in the pitching tests, corresponding wind-tunnel experiments were also conducted with a device which allowed the ball to rotate freely in the tunnel. Drag measurements and flow visualization by fog were performed on a rotating gyroball. Both in the pitching and wind-tunnel tests, the drag coefficient of the two-seam gyroball was smaller than that of the four-seam one by 0.04 or approximately 13%. The flow visualization revealed that the flow-separated area of the two-seam gyroball was smaller due to flow reattachment made possible by a more energetic boundary layer. This observation can well explain the drag difference between two- and four-seam gyroballs.