We consider a non-Newtonian flow through a thin slab Omega(delta) subset of R(3). The flow is governed by a Navier-Stokes system with Neumann's boundary conditions on a part of the slab boundary. The viscosity of the fluid depends on the second invariant of the strain tensor and on the velocity norm in L(4)(Omega(delta)). We prove convergence results when thickness delta tends to zero. At the limit we obtain a nonlinear Reynolds law for velocity, a nonlinear Darcy law for averaged velocity and a nonlinear two-dimensional Dirichlet's problem for the pressure. Finally we verify that our results are valid for a large class of non-Newtonian fluids by construction of examples obtained by perturbation of classical laws.
机构:
Sorbonne Univ, CNRS, Lab Jacques Louis Lions, F-75005 Paris, France
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaSorbonne Univ, CNRS, Lab Jacques Louis Lions, F-75005 Paris, France
机构:
Escola Superior de Tecnologia do Barreiro, IPS, CMA, FCT-UNL, LisboaEscola Superior de Tecnologia do Barreiro, IPS, CMA, FCT-UNL, Lisboa
Guerra T.
Tiago J.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, CEMAT, Instituto Superior Técnico, Universidade de Lisboa, LisboaEscola Superior de Tecnologia do Barreiro, IPS, CMA, FCT-UNL, Lisboa
Tiago J.
Sequeira A.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, CEMAT, Instituto Superior Técnico, Universidade de Lisboa, LisboaEscola Superior de Tecnologia do Barreiro, IPS, CMA, FCT-UNL, Lisboa