On reactive high power impulse magnetron sputtering

被引:30
|
作者
Gudmundsson, J. T. [1 ,2 ]
机构
[1] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland
[2] KTH Royal Inst Technol, Sch Elect Engn, Dept Space & Plasma Phys, SE-10044 Stockholm, Sweden
关键词
magnetron sputtering; high power impulse magnetron sputtering (HiPIMS); reactive sputtering; oxidation; PHYSICAL VAPOR-DEPOSITION; ION ENERGY; PROCESS STABILIZATION; FILMS; HYSTERESIS; DISCHARGE; TARGET; ARGON; TIME; DISTRIBUTIONS;
D O I
10.1088/0741-3335/58/1/014002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition (IPVD) technique that is particularly promising for reactive sputtering applications. However, there are few issues that have to be resolved before the full potential of this technique can be realized. Here we give an overview of the key experimental findings for the reactive HiPIMS discharge. An increase in the discharge current is commonly observed with increased partial pressure of the reactive gas or decreased repetition pulse frequency. There are somewhat conflicting claims regarding the hysteresis effect in the reactive HiPIMS discharge as some report reduction or elimination of the hysteresis effect while others claim a feedback control is essential. The ion energy distribution of the metal ion and the atomic ion of the reactive gas are similar and extend to very high energies while the ion energy distribution of the working gas and the molecular ion of the reactive gas are similar and are much less energetic.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hysteresis behaviour of reactive high power impulse magnetron sputtering
    Audronis, M.
    Bellido-Gonzalez, V.
    [J]. THIN SOLID FILMS, 2010, 518 (08) : 1962 - 1965
  • [2] THE CURRENT WAVEFORM IN REACTIVE HIGH POWER IMPULSE MAGNETRON SPUTTERING
    Gudmundsson, J. T.
    Lundin, D.
    Raadu, M. A.
    Minea, T.
    Brenning, N.
    [J]. 2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [3] Control of reactive high power impulse magnetron sputtering processes
    Audronis, M.
    Bellido-Gonzalez, V.
    Daniel, B.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2010, 204 (14): : 2159 - 2164
  • [4] Preface to Special Topic: Reactive high power impulse magnetron sputtering
    Hecimovic, A.
    Gudmundsson, J. T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
  • [5] Hysteresis-free reactive high power impulse magnetron sputtering
    Wallin, E.
    Helmersson, U.
    [J]. THIN SOLID FILMS, 2008, 516 (18) : 6398 - 6401
  • [6] Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering
    Kubart, T.
    Aijaz, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
  • [7] Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide
    Aiempanakit, Montri
    Helmersson, Ulf
    Aijaz, Asim
    Larsson, Petter
    Magnusson, Roger
    Jensen, Jens
    Kubart, Tomas
    [J]. SURFACE & COATINGS TECHNOLOGY, 2011, 205 (20): : 4828 - 4831
  • [8] Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)
    Anders, Andre
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
  • [9] Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge
    Hecimovic, A.
    Corbella, C.
    Maszl, C.
    Breilmann, W.
    von Keudell, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
  • [10] Growth of HfN thin films by reactive high power impulse magnetron sputtering
    Thorsteinsson, D. O.
    Gudmundsson, J. T.
    [J]. AIP ADVANCES, 2018, 8 (03)