Singular and Superlinear Perturbations of the Eigenvalue Problem for the Dirichlet p-Laplacian

被引:1
|
作者
Papageorgiou, Nikolaos S. [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Principal eigenvalue; nonlinear regularity; nonlinear maximum principle; multiple positive solutions; singular term; POSITIVE SOLUTIONS; EQUATIONS;
D O I
10.1007/s00025-020-01340-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem, driven by the p-Laplacian with a reaction involving two parameters lambda is an element of R, theta > 0. We view the problem as a perturbation of the classical eigenvalue problem for the Dirichlet problem. The perturbation consists of a parametric singular term and of a superlinear term. We prove a nonexistence and a multiplicity results in terms of the principal eigenvalue (lambda) over cap (1) > 0 of (-Delta(p), W-0(1,p)(Omega)). So, we show that if lambda >= (lambda) over cap (1) and theta > 0, then the problem has no positive solution, while if lambda < <(lambda)over cap>(1) and theta > 0 is suitably small (depending on lambda), there are two positive smooth solutions.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Singular and Superlinear Perturbations of the Eigenvalue Problem for the Dirichlet p-Laplacian
    Nikolaos S. Papageorgiou
    Chao Zhang
    [J]. Results in Mathematics, 2021, 76
  • [2] MULTIPLE SOLUTIONS TO A DIRICHLET EIGENVALUE PROBLEM WITH p-LAPLACIAN
    Marano, Salvatore A.
    Motreanu, Dumitru
    Puglisi, Daniele
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (02) : 277 - 291
  • [3] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 325 - 345
  • [4] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Yunru Bai
    Nikolaos S. Papageorgiou
    Shengda Zeng
    [J]. Mathematische Zeitschrift, 2022, 300 : 325 - 345
  • [5] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Xueying Sun
    [J]. Milan Journal of Mathematics, 2023, 91 : 353 - 373
  • [6] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Sun, Xueying
    [J]. MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) : 353 - 373
  • [7] An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities
    Bonanno, G
    Giovannelli, N
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) : 596 - 604
  • [8] POSITIVE SOLUTIONS FOR PERTURBATIONS OF THE EIGENVALUE PROBLEM FOR THE ROBIN p-LAPLACIAN
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 255 - 277
  • [9] POSITIVE SOLUTIONS FOR A SINGULAR AND SUPERLINEAR p-LAPLACIAN PROBLEM WITH GRADIENT TERM
    Rezende, Manuela C.
    Santos, Carlos Alberto
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 2029 - 2046
  • [10] Singular p-Laplacian equations with superlinear perturbation
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1462 - 1487