User friendly Box-Jenkins identification using nonparametric noise models

被引:0
|
作者
Schoukens, J. [1 ]
Rolain, Y. [1 ]
Vandersteen, G. [1 ]
Pintelon, R. [1 ]
机构
[1] Vrije Univ Brussel, Dept ELEC, Brussels, Belgium
关键词
system identification; non-parametric noise models; Box-Jenkins; SYSTEM-IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The identification of SISO linear dynamic systems in the presence of output noise disturbances is considered. A 'nonparametric' Box-Jenkins approach is studied: the parametric noise model is replaced by a nonparametric model that is obtained in a preprocessing step, and this without any user interaction. The major advantage for the user is that i) one method can be used to replace the classical ARX, ARMAX, OE, and Box-Jenkins models; ii) no noise model order should be selected. This makes the identification much easier to use for a wider public; iii) a bias on the plant model does not create a bias on the noise model. The disadvantage of the proposed nonparametric approach is a small loss in efficiency with respect to the optimal parametric choice. These results are illustrated on a series of well selected problems.
引用
收藏
页码:2148 / 2153
页数:6
相关论文
共 50 条
  • [1] Box-Jenkins alike identification using nonparametric noise models
    Schoukens, J
    Pintelon, R
    Rolain, Y
    AUTOMATICA, 2004, 40 (12) : 2083 - 2089
  • [2] PREDICTING USING BOX-JENKINS, NONPARAMETRIC, AND BOOTSTRAP TECHNIQUES
    GARCIAJURADO, I
    GONZALEZMANTEIGA, W
    PRADASANCHEZ, JM
    FEBREROBANDE, M
    CAO, R
    TECHNOMETRICS, 1995, 37 (03) : 303 - 310
  • [3] Bayesian Identification of LPV Box-Jenkins Models
    Darwish, Mohamed
    Cox, Pepijn
    Pillonetto, Gianluigi
    Toth, Roland
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 66 - 71
  • [4] Interactive Identification Method for Box-Jenkins Models
    Xie, Li
    Yang, Huizhong
    Ding, Feng
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 98 : 163 - 169
  • [5] SIMULATION PROCEDURES FOR BOX-JENKINS MODELS
    MCLEOD, AI
    HIPEL, KW
    WATER RESOURCES RESEARCH, 1978, 14 (05) : 969 - 975
  • [6] THE SVM APPROACH FOR BOX-JENKINS MODELS
    Amiri, Saeid
    von Rosen, Dietrich
    Zwanzig, Silvelyn
    REVSTAT-STATISTICAL JOURNAL, 2009, 7 (01) : 23 - 36
  • [7] Estimation of jump Box-Jenkins models
    Piga, Dario
    Breschi, Valentina
    Bemporad, Alberto
    AUTOMATICA, 2020, 120
  • [8] ARMA models and the Box-Jenkins methodology
    Makridakis, S
    Hibon, M
    JOURNAL OF FORECASTING, 1997, 16 (03) : 147 - 163
  • [9] BAYESIAN ESTIMATION OF BOX-JENKINS TRANSFER FUNCTION-NOISE MODELS
    NEWBOLD, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1973, 35 (02) : 323 - 336
  • [10] Forecasting Tuberculosis Incidence in Iran Using Box-Jenkins Models
    Moosazadeh, Mahmood
    Nasehi, Mahshid
    Bahrampour, Abbas
    Khanjani, Narges
    Sharafi, Saeed
    Ahmadi, Shanaz
    IRANIAN RED CRESCENT MEDICAL JOURNAL, 2014, 16 (05)