Complexity of gradient descent for multiobjective optimization

被引:57
|
作者
Fliege, J. [1 ]
Vaz, A. I. F. [2 ]
Vicente, L. N. [3 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton, Hants, England
[2] Univ Minho, ALGORITMI Res Ctr, Braga, Portugal
[3] Univ Coimbra, Dept Math, CMUC, Coimbra, Portugal
来源
OPTIMIZATION METHODS & SOFTWARE | 2019年 / 34卷 / 05期
关键词
Multiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexity; STEEPEST DESCENT; NEWTONS;
D O I
10.1080/10556788.2018.1510928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.
引用
收藏
页码:949 / 959
页数:11
相关论文
共 50 条
  • [1] Multiple-gradient descent algorithm (MGDA) for multiobjective optimization
    Desideri, Jean-Antoine
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (5-6) : 313 - 318
  • [2] ITERATION COMPLEXITY OF A BLOCK COORDINATE GRADIENT DESCENT METHOD FOR CONVEX OPTIMIZATION
    Hua, Xiaoqin
    Yamashita, Nobuo
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1298 - 1313
  • [3] Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds
    Ferreira, Orizon P.
    Louzeiro, Mauricio S.
    Prudente, Leandro F.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (02) : 507 - 533
  • [4] Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds
    Orizon P. Ferreira
    Mauricio S. Louzeiro
    Leandro F. Prudente
    [J]. Journal of Optimization Theory and Applications, 2020, 184 : 507 - 533
  • [5] Multiobjective Sequence Design via Gradient Descent Methods
    Baden, John Michael
    O'Donnell, Brian
    Schmieder, Lance
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (03) : 1237 - 1252
  • [6] Descent algorithm for nonsmooth stochastic multiobjective optimization
    Fabrice Poirion
    Quentin Mercier
    Jean-Antoine Désidéri
    [J]. Computational Optimization and Applications, 2017, 68 : 317 - 331
  • [7] On the convergence of steepest descent methods for multiobjective optimization
    Cocchi, G.
    Liuzzi, G.
    Lucidi, S.
    Sciandrone, M.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (01) : 1 - 27
  • [8] Descent algorithm for nonsmooth stochastic multiobjective optimization
    Poirion, Fabrice
    Mercier, Quentin
    Desideri, Jean-Antoine
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 68 (02) : 317 - 331
  • [9] On the convergence of steepest descent methods for multiobjective optimization
    G. Cocchi
    G. Liuzzi
    S. Lucidi
    M. Sciandrone
    [J]. Computational Optimization and Applications, 2020, 77 : 1 - 27
  • [10] The Complexity of Gradient Descent: CLS = PPAD ∧ PLS
    Fearnley, John
    Goldberg, Paul
    Hollender, Alexandros
    Savani, Rahul
    [J]. JOURNAL OF THE ACM, 2023, 70 (01)