TREE SPECIES IDENTIFICATION USING 3D SPECTRAL DATA AND 3D CONVOLUTIONAL NEURAL NETWORK

被引:0
|
作者
Polonen, Ilkka [1 ]
Annala, Leevi [1 ]
Rahkonen, Samuli [1 ]
Nevalainen, Olli [2 ]
Honkavaara, Eija [2 ]
Tuominen, Sakari [3 ]
Viljanen, Niko [2 ]
Hakala, Teemu [2 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland
[2] Natl Land Survey Finland, Finnish Geospatial Res Insititute, Geodeetinrinne 2, Masala 02430, Finland
[3] Nat Resources Inst Finland, PL 2, Helsinki 00791, Finland
关键词
Tree species; spectral imaging; 3D; convolutional neural network; UAV;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study we apply 3D convolutional neural network (CNN) for tree species identification. Study includes the three most common Finnish tree species. Study uses a relatively large high-resolution spectral data set, which contains also a digital surface model for the trees. Data has been gathered using an unmanned aerial vehicle, a framing hyperspectral imager and a regular RUB camera, Achieved classification results arc promising by with overall accuracy of 96.2 % for the classification of the validation data set.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks
    Mayra, Janne
    Keski-Saari, Sarita
    Kivinen, Sonja
    Tanhuanpaa, Topi
    Hurskainen, Pekka
    Kullberg, Peter
    Poikolainen, Laura
    Viinikka, Arto
    Tuominen, Sakari
    Kumpula, Timo
    Vihervaara, Petteri
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 256
  • [2] Application of 3D fluorescence spectroscopy and a convolutional neural network for oil emulsion species identification
    Wang, Zhiwei
    Zhao, Yuhan
    Kong, Deming
    [J]. MEASUREMENT, 2024, 237
  • [3] Brain age estimation based on 3D MRI images using 3D convolutional neural network
    Pardakhti, Nastaran
    Sajedi, Hedieh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (33-34) : 25051 - 25065
  • [4] Brain age estimation based on 3D MRI images using 3D convolutional neural network
    Nastaran Pardakhti
    Hedieh Sajedi
    [J]. Multimedia Tools and Applications, 2020, 79 : 25051 - 25065
  • [5] Classification of MRI Migraine Medical Data Using 3D Convolutional Neural Network
    Ng, Hwei Geok
    Kerzel, Matthias
    Mehnert, Jan
    May, Arne
    Wermter, Stefan
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 300 - 309
  • [6] Multi-person 3D pose estimation from 3D cloud data using 3D convolutional neural networks
    Vasileiadis, Manolis
    Bouganis, Christos-Savvas
    Tzovaras, Dimitrios
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 185 : 12 - 23
  • [7] A 3D Tensor Representation of Speech and 3D Convolutional Neural Network for Emotion Recognition
    Mohammad Reza Falahzadeh
    Fardad Farokhi
    Ali Harimi
    Reza Sabbaghi-Nadooshan
    [J]. Circuits, Systems, and Signal Processing, 2023, 42 : 4271 - 4291
  • [8] A 3D Tensor Representation of Speech and 3D Convolutional Neural Network for Emotion Recognition
    Falahzadeh, Mohammad Reza
    Farokhi, Fardad
    Harimi, Ali
    Sabbaghi-Nadooshan, Reza
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (07) : 4271 - 4291
  • [9] 3D Sketch-based 3D Model Retrieval with Convolutional Neural Network
    Ye, Yuxiang
    Li, Bo
    Lu, Yijuan
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2936 - 2941
  • [10] 3D Convolutional Neural Network for Action Recognition
    Zhang, Junhui
    Chen, Li
    Tian, Jing
    [J]. COMPUTER VISION, PT I, 2017, 771 : 600 - 607