Biderivations and Commuting Linear Maps on Lie Algebras

被引:0
|
作者
Bresar, Matej [1 ,2 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
[4] Hebei Normal Univ, Coll Math & Inf Sci, Shijiazhuang, Hebei, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebra; biderivation; commuting linear map; centroid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lie algebra over a commutative unital ring F containing 1/2. If L is perfect and centerless, then every skew-symmetric biderivation delta : L x L -> L is of the form delta(x, y) = gamma([x, y]) for all x, y is an element of L, where gamma is an element of Cent(L), the centroid of L. Under a milder assumption that [c, [L, L]] = {0} implies c = 0, every commuting linear map from L to L lies in Cent(L). These two results are special cases of our main theorems which concern biderivations and commuting linear maps having their ranges in an L-module. We provide a variety of examples, some of them showing the necessity of our assumptions and some of them showing that our results cover several results from the literature.
引用
收藏
页码:885 / 900
页数:16
相关论文
共 50 条
  • [1] Biderivations and Commuting Linear Maps on Current Lie Algebras
    Eremita, Daniel
    [J]. JOURNAL OF LIE THEORY, 2021, 31 (01) : 119 - 126
  • [2] Linear Commuting Maps and Biderivations on the Lie Algebras W(a, b)
    Han, Xiu
    Wang, Dengyin
    Xia, Chunguang
    [J]. JOURNAL OF LIE THEORY, 2016, 26 (03) : 777 - 786
  • [3] Biderivations and linear commuting maps on the Lie algebra gca
    Cheng, Xiao
    Wang, Minjing
    Sun, Jiancai
    Zhang, Honglian
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12): : 2483 - 2493
  • [4] Biderivations and linear commuting maps on the restricted contact lie algebras K(n; 1)
    Chang, Yuan
    Chen, Liangyun
    Zhou, Xin
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (11) : 1529 - 1540
  • [6] Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras H(n; 1)
    Chang, Yuan
    Chen, Liangyun
    Zhou, Xin
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1311 - 1326
  • [7] Biderivations And Linear Commuting Maps on the Schrodinger-Virasoro Lie Algebra
    Wang, Dengyin
    Yu, Xiaoxiang
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2166 - 2173
  • [8] Automorphisms, σ-Biderivations and σ-Commuting Maps of Triangular Algebras
    Gonzalez, Candido Martin
    Repka, Joe
    Sanchez-Ortega, Juana
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [9] Super-biderivations and linear super-commuting maps on the lie superalgebras
    Tang, Liming
    Meng, Lingyi
    Chen, Liangyun
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5076 - 5085
  • [10] BIDERIVATIONS AND LINEAR COMMUTING MAPS ON SIMPLE GENERALIZED WITT ALGEBRAS OVER A FIELD
    Chen, Zhengxin
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 1 - 12