Nitrogen, sulfur co-doped porous carbon via high internal phase emulsion template and its potential application as the electrode of high-performance supercapacitor

被引:8
|
作者
Zhao, Yulai [1 ,2 ]
Wang, Anjun [1 ]
Shen, Lianzhi [1 ]
Zhao, Zhikui [1 ]
Xiao, Longqiang [1 ,2 ]
Hou, Linxi [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
[2] Qingyuan Innovat Lab, Quanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemistry; emulsion polymerization; porous materials; resins; DIRECT CARBONIZATION; ENERGY-STORAGE; FOAM; POLYHIPE; ACTIVATION; CAPACITY; BIOMASS;
D O I
10.1002/app.52417
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Heteroatom doped carbonaceous material with high specific surface area (SSA) is vital for assembling advanced supercapacitor. Here, a moderate and valid strategy is proposed to synthesize N, S co-doped porous carbons (NSPCs) which are derived from porous resorcinol-melamine-formaldehyde-thiourea (RMFT) resins via high internal phase emulsion (HIPE) template. The morphology, structure, porous characteristics and chemical ingredients of the prepared NSPCs are investigated by SEM, XRD, Raman spectra, and XPS systematically. The obtained NSPCs show typical open-cell morphology. As the molar ratio of thiourea to melamine (T/M) increased from 0:1 to 2:1, the SSA of NSPC increases gradually from 927 to 1721 m(2) g(-1). Electrochemical tests show that when T/M is 2:1, the specific capacity of NSPC reaches 213.5 F g(-1) at 1 A g(-1). After 10,000 charge-discharge cycles at 10 A g(-1), the retention ratio of specific capacitance is 99.6%, indicating an excellent cycling stability. Excellent performances together with facile preparation make NSPC via HIPE template a potential candidate as electrode of advanced supercapacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode
    Wan, Liu
    Wei, Wei
    Xie, Mingjiang
    Zhang, Yan
    Li, Xiang
    Xiao, Rui
    Che, Jian
    Du, Cheng
    ELECTROCHIMICA ACTA, 2019, 311 : 72 - 82
  • [2] N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials
    Wei, Yu-Chen
    Zhou, Jian
    Yang, Lei
    Gu, Jing
    Chen, Zhi-Peng
    He, Xiao-Jun
    NEW CARBON MATERIALS, 2022, 37 (04) : 707 - 715
  • [3] Titanium and nitrogen co-doped porous carbon for high-performance supercapacitors†
    Chen, Yurou
    Feng, Xin
    Wang, Qi
    Gu, WenXian
    Wu, Wanyi
    Peng, Xuqiang
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (09) : 3628 - 3635
  • [4] Nitrogen and Phosphorus Co-doped Porous Carbon for High-Performance Supercapacitors
    Zhou, Jiaming
    Ye, Shewen
    Zeng, Qinqin
    Yang, Hui
    Chen, Jiahao
    Guo, Ziting
    Jiang, Honghui
    Rajan, Karthikeyan
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [5] Supramolecular-driven fabrication of porous nitrogen/sulfur co-doped graphene toward high-performance supercapacitor
    Cheng, Honghong
    Li, Bo
    Meng, Tao
    Liu, Cong
    Shu, Dong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (13) : 18624 - 18633
  • [6] Nitrogen and oxygen co-doped hierarchical porous carbon for high performance supercapacitor electrodes
    Wang, Pengzhen
    Luo, Wanxia
    Guo, Nannan
    Wang, Luxiang
    Jia, Dianzeng
    Zhao, Zongbin
    Zhang, Su
    Xu, Mengjiao
    CHEMICAL PHYSICS LETTERS, 2019, 730 : 32 - 38
  • [7] Nitrogen and Sulfur Co-Doped Graphene-Like Carbon from Industrial Dye Wastewater for Use as a High-Performance Supercapacitor Electrode
    Lin, Yannan
    Chen, Hui
    Shi, Yulin
    Wang, Gang
    Chen, Long
    Wang, Fu
    Li, Shiqi
    Yu, Feng
    Zhang, Lili
    GLOBAL CHALLENGES, 2019, 3 (11)
  • [8] PANI-grafted boron, nitrogen co-doped carbon fiber: An outstanding, high-performance supercapacitor electrode
    Nayan, Rajiv
    Sinha, Shubhra
    Dixit, Vaibhav
    Satnami, Manmohan L.
    Ghosh, Kallol K.
    Pervez, Shamsh
    Deb, Manas Kanti
    Shrivas, Kamlesh
    Rai, Manish K.
    Yenchalwar, Sandeep G.
    Wasnik, Kundan
    Jadkar, Sandesh R.
    Karbhal, Indrapal
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [9] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Fei Dang
    Wei Zhao
    Pengfei Yang
    Huaping Wu
    Yilun Liu
    Journal of Applied Electrochemistry, 2020, 50 : 463 - 473
  • [10] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Dang, Fei
    Zhao, Wei
    Yang, Pengfei
    Wu, Huaping
    Liu, Yilun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (04) : 463 - 473