Surface gravity on the horizon of η -: ξ spacetime

被引:0
|
作者
Li, ZJ [1 ]
Gui, YX [1 ]
Zhang, SH [1 ]
Yu, H [1 ]
机构
[1] Dalian Univ Technol, Dept Phys, Dalian 116024, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the two methods of defining the surface gravity kappa on the horizon, which are the metric definition and the definition given by the spacetime conformal method. It is found that the latter is of greater generality. By this method, we find that kappa of eta - xi spacetime is equal to the exponent factor a in the coordinate transformation, which confirms the argument that eta - xi spacetime can be considered as the background spacetime for finite-temperature field theories. The reasons why the metric definition of kappa can not be applied in eta - xi spacetime are presented.
引用
收藏
页码:2154 / 2156
页数:3
相关论文
共 50 条
  • [1] Generalized Vaidya spacetime in Lovelock gravity and thermodynamics on the apparent horizon
    Cai, Rong-Gen
    Cao, Li-Ming
    Hu, Ya-Peng
    Kim, Sang Pyo
    [J]. PHYSICAL REVIEW D, 2008, 78 (12):
  • [2] Gravity as elasticity of spacetime: A paradigm to understand horizon thermodynamics and cosmological constant
    Padmanabhan, T
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (10): : 2293 - 2298
  • [3] Horizon surface gravity in corotating black hole binaries
    Le Tiec, Alexandre
    Grandclement, Philippe
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (14)
  • [4] On Quantum Spacetime and the horizon problem
    Doplicher, Sergio
    Morsella, Gerardo
    Pinamonti, Nicola
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 196 - 210
  • [5] Horizon thermodynamics and spacetime mappings
    Faraoni, Valerio
    Vitagliano, Vincenzo
    [J]. PHYSICAL REVIEW D, 2014, 89 (06):
  • [6] Gravity as Spacetime Curvature
    Torretti R.
    [J]. Physics in Perspective, 2000, 2 (2) : 118 - 134
  • [7] ON THE MEASURE OF SPACETIME AND GRAVITY
    Dadhich, Naresh
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (14): : 2739 - 2747
  • [8] Horizon surface gravity as 2D geodesic expansion
    Jacobson, Ted
    Parentani, Renaud
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (19)
  • [9] Observation of a phase space horizon with surface gravity water waves
    Rozenman, Georgi Gary
    Ullinger, Freyja
    Zimmermann, Matthias
    Efremov, Maxim A.
    Shemer, Lev
    Schleich, Wolfgang P.
    Arie, Ady
    [J]. COMMUNICATIONS PHYSICS, 2024, 7 (01):
  • [10] Generalized Vaidya spacetime: Horizons, conformal symmetries, surface gravity and diagonalization
    Vertogradov, Vitalii
    Kudryavcev, Dmitriy
    [J]. MODERN PHYSICS LETTERS A, 2023, 38 (24-25)