Lipschitz symmetric functions on Banach spaces with symmetric bases

被引:1
|
作者
Martsinkiv, M., V [1 ]
Vasylyshyn, S., I [1 ]
Vasylyshyn, T. V. [1 ]
Zagorodnyuk, A., V [1 ]
机构
[1] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenko Str, UA-76018 Ivano Frankivsk, Ukraine
基金
新加坡国家研究基金会;
关键词
Lipschitz symmetric function on Banach space; symmetric basis; tropical polynomial; HOLOMORPHIC-FUNCTIONS; POLYNOMIALS;
D O I
10.15330/cmp.13.3.727-733
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Lipschitz symmetric functions on a Banach space X with a symmetric basis. We consider power symmetric polynomials on l(1) and show that they are Lipschitz on the unbounded subset consisting of vectors x is an element of l(1) such that vertical bar xn vertical bar <= 1. Using functions max and min and tropical polynomials of several variables, we constructed a large family of Lipschitz symmetric functions on the Banach space c(0) which can be described as a semiring of compositions of tropical polynomials over c(0).
引用
收藏
页码:727 / 733
页数:7
相关论文
共 50 条