Automated georeferencing and orthorectification of Amazon basin-wide SAR mosaics using SRTM DEM data

被引:47
|
作者
Sheng, YW [1 ]
Alsdorf, DE
机构
[1] SUNY Syracuse, Coll Environm Sci & Forestry, Dept Environm Resources & Forest Engn, Syracuse, NY 13210 USA
[2] Ohio State Univ, Dept Geol Sci, Columbus, OH 43210 USA
来源
基金
美国国家航空航天局;
关键词
digital elevation models (DEMs); orthorectification; piecewise image rectification; Shuttle Radar Topography Mission (SRTM); synthetic aperture radar (SAR) mosaics; topographic distortions;
D O I
10.1109/TGRS.2005.852160
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Frequently large synthetic aperture radar (SAR) mosaics are not precisely georeferenced because topographic distortions are not removed during the mosaicking process due to the lack of adequate digital elevation models (DEMs). The Shuttle Radar Topography Mission (SRTM) has recently provided high-resolution DEM data with nearly global coverage and makes it possible to rectify SAR mosaics. Though techniques are available for rectifying individual scenes of SAR imagery using DEM data, these methods encounter difficulties when rectifying SAR mosaics because abrupt geometric discontinuities occur in SAR mosaics at scene boundaries. This paper introduces an automated method to removing topographic distortions from SAR mosaics and producing orthorectified mosaics, without accessing original SAR images. The procedures include SAR image simulation from DEMs, two-staged image matching between SAR mosaics and the simulated image, automated tie-point derivation and screening, piecewise image rectification for localized adjustment, and production of orthorectified mosaics. The method is used to orthorectify both high-water and low-water Global Rain Forest Mapping project SAR mosaics covering the entire Amazon basin. Validation results show that one-pixel (i.e., 92 in) positioning accuracy (root mean square error) was achieved in both cases, compared to 14-16 pixel errors (i.e., 1288-1472 in) of the original mosaics.
引用
收藏
页码:1929 / 1940
页数:12
相关论文
共 12 条
  • [1] Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?
    Gloor, M.
    Phillips, O. L.
    Lloyd, J. J.
    Lewis, S. L.
    Malhi, Y.
    Baker, T. R.
    Lopez-Gonzalez, G.
    Peacock, J.
    Almeida, S.
    Alves de Oliveira, A. C.
    Alvarez, E.
    Amaral, I.
    Arroyo, L.
    Aymard, G.
    Banki, O.
    Blanc, L.
    Bonal, D.
    Brando, P.
    Chao, K. -J.
    Chave, J.
    Davila, N.
    Erwin, T.
    Silva, J.
    Di Fiore, A.
    Feldpausch, T. R.
    Freitas, A.
    Herrera, R.
    Higuchi, N.
    Honorio, E.
    Jimenez, E.
    Killeen, T.
    Laurance, W.
    Mendoza, C.
    Monteagudo, A.
    Andrade, A.
    Neill, D.
    Nepstad, D.
    Nunez Vargas, P.
    Penuela, M. C.
    Pena Cruz, A.
    Prieto, A.
    Pitman, N.
    Quesada, C.
    Salomao, R.
    Silveira, Marcos
    Schwarz, M.
    Stropp, J.
    Ramirez, F.
    Ramirez, H.
    Rudas, A.
    [J]. GLOBAL CHANGE BIOLOGY, 2009, 15 (10) : 2418 - 2430
  • [2] Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data
    Loukas, A
    Vasiliades, L
    Domenikiotis, C
    Dalezios, NR
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2005, 30 (1-3) : 69 - 79
  • [3] Estimation of basin-wide recharge rates using spring flow, precipitation, and temperature data
    Perez, ES
    [J]. GROUND WATER, 1997, 35 (06) : 1058 - 1065
  • [4] Batch automated image processing of 2D seismic data for salt discrimination and basin-wide mapping
    Morris, Scott
    Li, Shuang
    Dupont, Tony
    Grace, John D.
    [J]. GEOPHYSICS, 2019, 84 (06) : O113 - O123
  • [5] Reconstruction of the Basin-Wide Sea-Level Variability in the North Sea Using Coastal Data and Generative Adversarial Networks
    Zhang, Zeguo
    Stanev, Emil V.
    Grayek, Sebastian
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (12)
  • [6] MAPPING SOIL TYPOLOGIES USING GEOMORPHOLOGIC FEATURES EXTRACTED FROM DEM AND SAR DATA: A ENVIRONMENTAL FACTOR AFFECTING MALARIA TRANSMISSION IN THE AMAZON
    Li, Zhichao
    Catry, Thibault
    Dessay, Nadine
    Roux, Emmanuel
    Seyler, Frederique
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3140 - 3143
  • [7] Watershed delineation for the Amazon sub-basin system using GTOPO30 DEM and a drainage network extracted from JERS SAR images
    Seyler, Frederique
    Muller, Frederic
    Cochonneau, Gerard
    Guimaraes, Leandro
    Guyot, Jean Loup
    [J]. HYDROLOGICAL PROCESSES, 2009, 23 (22) : 3173 - 3185
  • [8] CLASSIFICATION OF WIDE-AREA SAR MOSAICS: DEEP LEARNING APPROACH FOR CORINE BASED MAPPING OF FINLAND USING MULTITEMPORAL SENTINEL-1 DATA
    Antropov, Oleg
    Rauste, Yrjo
    Scepanovic, Sanja
    Ignatenko, Vladimir
    Lonnqvist, Anne
    Praks, Jaan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4283 - 4286
  • [9] Characterization of cover-collapse sinkhole morphology on a groundwater basin-wide scale using lidar elevation data: A new conceptual model for sinkhole evolution
    Panno, Samuel, V
    Luman, Donald E.
    [J]. GEOMORPHOLOGY, 2018, 318 : 1 - 17
  • [10] Data on comparative studies of lineaments extraction from ASTER DEM, SRTM, and Cartosat for Jilledubanderu River basin, Anantapur district, A.P, India by using remote sensing and GIS
    Rajasekhar, M.
    Raju, G. Sudarsana
    Raju, R. Siddi
    Ramachandra, M.
    Kumar, B. Pradeep
    [J]. DATA IN BRIEF, 2018, 20 : 1676 - 1682