Mobile Big Data Analytics Using Deep Learning and Apache Spark

被引:1
|
作者
Abu Alsheikh, Mohammad [1 ,2 ]
Niyato, Dusit [1 ]
Lin, Shaowei [3 ]
Tan, Hwee-Pink [4 ]
Han, Zhu [5 ,6 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
[2] Inst Infocomm Res, Singapore, Singapore
[3] Singapore Univ Technol & Design, Singapore, Singapore
[4] Singapore Management Univ, Informat Syst Practice, Singapore 178902, Singapore
[5] Univ Houston, Elect & Comp Engn Dept, Houston, TX 77004 USA
[6] Univ Houston, Dept Comp Sci, Houston, TX 77004 USA
来源
IEEE NETWORK | 2016年 / 30卷 / 03期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
RECOGNITION;
D O I
10.1109/mnet.2016.7474340
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of mobile devices, such as smartphones and Internet of Things gadgets, has resulted in the recent mobile big data era. Collecting mobile big data is unprofitable unless suitable analytics and learning methods are utilized to extract meaningful information and hidden patterns from data. This article presents an overview and brief tutorial on deep learning in mobile big data analytics and discusses a scalable learning framework over Apache Spark. Specifically, distributed deep learning is executed as an iterative MapReduce computing on many Spark workers. Each Spark worker learns a partial deep model on a partition of the overall mobile, and a master deep model is then built by averaging the parameters of all partial models. This Spark-based framework speeds up the learning of deep models consisting of many hidden layers and millions of parameters. We use a context-aware activity recognition application with a real-world dataset containing millions of samples to validate our framework and assess its speedup effectiveness.
引用
收藏
页码:22 / 29
页数:8
相关论文
共 50 条
  • [1] Big data Predictive Analytics for Apache Spark using Machine Learning
    Junaid, Muhammad
    Wagan, Shiraz Ali
    Qureshi, Nawab Muhammad Faseeh
    Nam, Choon Sung
    Shin, Dong Ryeol
    [J]. 2020 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2020,
  • [2] Big data analytics on Apache Spark
    Salloum S.
    Dautov R.
    Chen X.
    Peng P.X.
    Huang J.Z.
    [J]. International Journal of Data Science and Analytics, 2016, 1 (3-4) : 145 - 164
  • [3] Big data classification using deep learning and apache spark architecture
    Anilkumar V. Brahmane
    B. Chaitanya Krishna
    [J]. Neural Computing and Applications, 2021, 33 : 15253 - 15266
  • [4] A Big Data Analysis Framework Using Apache Spark and Deep Learning
    Gupta, Anand
    Thakur, Hardeo Kumar
    Shrivastava, Ritvik
    Kumar, Pulkit
    Nag, Sreyashi
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 9 - 16
  • [5] Big data classification using deep learning and apache spark architecture
    Brahmane, Anilkumar, V
    Krishna, B. Chaitanya
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15253 - 15266
  • [6] Big Data Software Analytics with Apache Spark
    Gousios, Georgios
    [J]. PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING - COMPANION (ICSE-COMPANION, 2018, : 542 - 543
  • [7] Effective Selection of Machine Learning Algorithms for Big Data Analytics Using Apache Spark
    Hafez, Manar Mohamed
    Shehab, Mohamed Elemam
    El Fakharany, Essam
    Hegazy, Abd El Ftah Abdel Ghfar
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016, 2017, 533 : 692 - 704
  • [8] An insight into tree based machine learning techniques for big data Analytics using Apache Spark
    Sheshasaayee, Ananthi
    Lakshmi, J. V. N.
    [J]. 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1740 - 1743
  • [9] Predictors of outpatients' no-show: big data analytics using apache spark
    Daghistani, Tahani
    AlGhamdi, Huda
    Alshammari, Riyad
    AlHazme, Raed H.
    [J]. JOURNAL OF BIG DATA, 2020, 7 (01)
  • [10] Predictors of outpatients’ no-show: big data analytics using apache spark
    Tahani Daghistani
    Huda AlGhamdi
    Riyad Alshammari
    Raed H. AlHazme
    [J]. Journal of Big Data, 7