Mathematical analysis of a time delay visceral leishmaniasis model

被引:0
|
作者
Gandhi, Velmurugan [1 ]
Al-Salti, Nasser S. [1 ]
Elmojtaba, Ibrahim M. [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Math, POB 36, Muscat, Oman
关键词
Visceral leishmaniasis model; Stability; Time-delay; Hopf bifurcation; Numerical simulation; GLOBAL STABILITY; DYNAMICS; BIFURCATION;
D O I
10.1007/s12190-019-01315-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss some of the dynamical characteristics of a visceral leishmaniasis (VL) model with time delay. We have derived sufficient conditions to ensure the stability of the considered delayed VL model at the steady states. Taking the time delay as a bifurcation parameter, we have established a criteria for the existence of Hopf bifurcation of the considered model. Moreover, conditions for global stability of the steady states are also presented. Finally, some numerical simulations are given to show the effectiveness of our theoretical results.
引用
收藏
页码:217 / 237
页数:21
相关论文
共 50 条
  • [1] Mathematical analysis of a time delay visceral leishmaniasis model
    Velmurugan Gandhi
    Nasser S. Al-Salti
    Ibrahim M. Elmojtaba
    [J]. Journal of Applied Mathematics and Computing, 2020, 63 : 217 - 237
  • [2] MATHEMATICAL MODEL OF THE TRANSMISSION FOR VISCERAL LEISHMANIASIS
    Nemer, Looli Mohamed Alawam
    Schneider, Kristan
    [J]. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2021, 105 (05): : 325 - 325
  • [3] Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan
    ELmojtaba, Ibrahim M.
    Mugisha, J. Y. T.
    Hashim, Mohsin H. A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2567 - 2578
  • [4] Mathematical Model Analysis and Simulation of Visceral Leishmaniasis, Kashgar, Xinjiang, 2004-2016
    Song, Yateng
    Zhang, Tailei
    Li, Hui
    Wang, Kai
    Lu, Xiaobo
    [J]. COMPLEXITY, 2020, 2020
  • [5] Progress in the Mathematical Modelling of Visceral Leishmaniasis
    Rock, K. S.
    Quinnell, R. J.
    Medley, G. F.
    Courtenay, O.
    [J]. ADVANCES IN PARASITOLOGY, VOL 94: MATHEMATICAL MODELS FOR NEGLECTED TROPICAL DISEASES: ESSENTIAL TOOLS FOR CONTROL AND ELIMINATION, PT B, 2016, 94 : 49 - 131
  • [6] Estimating the Optimal Control of Zoonotic Visceral Leishmaniasis by the Use of a Mathematical Model
    Ribas, Laila Massad
    Zaher, Vera Lucia
    Shimozako, Helio Junji
    Massad, Eduardo
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [7] Analysis of a Mathematical Model for Worm Virus Propagation with time delay
    Wang Shaojie
    Liu Qiming
    Ma Weining
    Dang Bo
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND COMPUTER SCIENCE, 2009, : 375 - +
  • [8] Mathematical modeling of Visceral Leishmaniasis and control strategies
    Biswas, Santanu
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 104 : 546 - 556
  • [9] Mathematical model for the dynamics of visceral leishmaniasis-malaria co-infection
    ELmojtaba, Ibrahim M.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4334 - 4353
  • [10] Analysis of the mathematical model of cutaneous Leishmaniasis disease
    Sinan, Muhammad
    Ansari, Khursheed J.
    Kanwal, Asia
    Shah, Kamal
    Abdeljawad, Thabet
    Abdalla, Bahaaeldin
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 72 : 117 - 134