Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

被引:543
|
作者
Jagtap, Ameya D. [1 ]
Kharazmi, Ehsan [1 ]
Karniadakis, George Em [1 ,2 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99354 USA
关键词
cPINN; Mortar PINN; Domain decomposition; Machine learning; Conservation laws; Inverse problems; EQUATIONS;
D O I
10.1016/j.cma.2020.113028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg-de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier-Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node. Published by Elsevier B.V.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Deep fuzzy physics-informed neural networks for forward and inverse PDE problems
    Wu, Wenyuan
    Duan, Siyuan
    Sun, Yuan
    Yu, Yang
    Liu, Dong
    Peng, Dezhong
    NEURAL NETWORKS, 2025, 181
  • [2] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [3] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [4] Locally linearized physics-informed neural networks for Riemann problems of hyperbolic conservation laws
    Liu, Jiahao
    Zheng, Supei
    Song, Xueli
    Xu, Doudou
    PHYSICS OF FLUIDS, 2024, 36 (11)
  • [5] Solving forward and inverse problems of contact mechanics using physics-informed neural networks
    Sahin, Tarik
    von Danwitz, Max
    Popp, Alexander
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [6] Auxiliary physics-informed neural networks for forward, inverse, and coupled radiative transfer problems
    Riganti, R.
    Negro, L. Dal
    APPLIED PHYSICS LETTERS, 2023, 123 (17)
  • [7] Research on forward and inverse problems of structure based on physics-informed graph neural networks
    Zheng, Zhe
    Jiang, Wen-qiang
    Wang, Zhang-qi
    Xiao, Zi-ting
    Guo, Yu-cheng
    STRUCTURES, 2025, 74
  • [8] Physics-Informed Neural Networks for Solving Forward and Inverse Problems in Complex Beam Systems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 5981 - 5995
  • [9] Physics-informed neural networks for inverse problems in supersonic flows
    Jagtap, Ameya D.
    Mao, Zhiping
    Adams, Nikolaus
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 466
  • [10] Physics-Informed Neural Networks for Inverse Problems in Structural Dynamics
    Teloli, Rafael de O.
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Tittarelli, Roberta
    Le Moal, Patrice
    Ouisse, Morvan
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVIII, 2024, 12950