Two-dimensional Metal-organic Frameworks for Electrochemical CO2 Reduction Reaction

被引:21
|
作者
Zhan, Tingting [1 ]
Zou, Yingbing [1 ]
Yang, Ying [1 ]
Ma, Xiuling [1 ]
Zhang, Zhangjing [1 ,2 ]
Xiang, Shengchang [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Prov Key Lab Polymer Mat, Fuzhou 350007, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2 reduction reaction; Electrocatalyst; Green chemistry; Metal-organic framework; Two-dimensional nanomaterials; ANHYDROUS PROTON CONDUCTIVITY; CARBON-DIOXIDE; EFFICIENT ELECTROREDUCTION; ELECTROCATALYTIC REDUCTION; ACTIVE-SITES; NANOSHEETS; COPPER; PERFORMANCE; METHANOL; MOF;
D O I
10.1002/cctc.202101453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To lower CO2 emissions and address the current energy crisis, one of the most promising approaches that converting the captured CO2 into valuable chemicals and fuels via electrocatalysis is proposed recently. Metal-organic frameworks (MOFs) as an emerging multifunctional material have been extensively designed for electrocatalytic reduction of CO2. In terms of chemical and structural properties, 2D MOFs have obvious superiority over 3D bulk MOFs. Specifically, the large porosity and ultrathin structure of the 2D materials contribute to exotic properties such as enhanced electrical conductivity and rapid mass transport during reactions, which are in favor of electrocatalysis. In this review, the design strategies of 2D MOFs are discussed. Then, the recent advances of MOFs and their derivative catalysts with unique 2D structures for CO2 reduction are introduced. These examples are expected to provide clues to rational design strategies and synthesis of high-performance CO2 electroreduction, beyond the bulk MOFs.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction
    Tekalgne, Mahider Asmare
    Do, H. H.
    Hasani, A.
    Van Le, Q.
    Jang, H. W.
    Ahn, S. H.
    Kim, S. Y.
    [J]. MATERIALS TODAY ADVANCES, 2020, 5
  • [2] Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2
    Li, Fang
    Gu, Geun Ho
    Choi, Changhyeok
    Kolla, Praveen
    Hong, Song
    Wu, Tai-Sing
    Soo, Yun-Liang
    Masa, Justus
    Mukerjee, Sanjeev
    Jung, Yousung
    Qiu, Jieshan
    Sun, Zhenyu
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277
  • [3] Ultrathin two-dimensional metal-organic framework nanosheets for efficient electrochemical CO2 reduction
    Ye, Lu
    Chen, Xuyang
    Gao, Yan
    Ding, Xin
    Hou, Jungang
    Cao, Shuyan
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 57 : 627 - 631
  • [4] Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO2 Reduction
    Li, Chengbo
    Ji, Yuan
    Wang, Youpeng
    Liu, Chunxiao
    Chen, Zhaoyang
    Tang, Jialin
    Hong, Yawei
    Li, Xu
    Zheng, Tingting
    Jiang, Qiu
    Xia, Chuan
    [J]. NANO-MICRO LETTERS, 2023, 15 (01)
  • [5] Engineering Metal-Organic Frameworks for the Electrochemical Reduction of CO2: A Minireview
    Wang, Riming
    Kapteijn, Freek
    Gascon, Jorge
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3452 - 3461
  • [6] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Kang, Xiaomin
    Fu, Guodong
    Fu, Xian-Zhu
    Luo, Jing-Li
    [J]. CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [7] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Xiaomin Kang
    Guodong Fu
    Xian-Zhu Fu
    Jing-Li Luo
    [J]. Chinese Chemical Letters, 2023, 34 (06) : 141 - 150
  • [8] Metal-organic frameworks and their derivatives for the electrochemical CO2 reduction reaction: insights from molecular engineering
    Liu, Xiaoming
    Liu, Xuan-He
    Zhang, Xiangrui
    Wang, Huan
    Zhao, Qinglan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (32) : 20578 - 20605
  • [9] Metal-organic framework composites for electrochemical CO2 reduction reaction
    Adegoke, Kayode A.
    Ighalo, Joshua O.
    Conradie, Jeanet
    Ohoro, Chinemerem R.
    Amaku, James F.
    Oyedotun, Kabir O.
    Maxakato, Nobanathi W.
    Akpomie, Kovo G.
    Okeke, Emmanuel Sunday
    Olisah, Chijioke
    Malloum, Alhadji
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 341
  • [10] Designed Synthesis of Functionalized Two-Dimensional Metal-Organic Frameworks with Preferential CO2 Capture
    Yan, Qiuju
    Lin, Yichao
    Wu, Pengyan
    Zhao, Li
    Cao, Lujie
    Peng, Luming
    Kong, Chunlong
    Chen, Liang
    [J]. CHEMPLUSCHEM, 2013, 78 (01): : 86 - 91