Parameter estimation for sparse targets in phased-MIMO radar

被引:0
|
作者
Zhu, Can [1 ]
Zhang, Ning [1 ]
Chen, Zhimin [2 ]
Chen, Peng [3 ]
机构
[1] Nanjing Marine Radar Inst, Nanjing, Jiangsu, Peoples R China
[2] Shanghai Dianji Univ, Sch Elect & Informat, Shanghai, Peoples R China
[3] Southeast Univ, State Key Lab Millimeter Waves, Nanjing, Jiangsu, Peoples R China
来源
JOURNAL OF ENGINEERING-JOE | 2019年 / 2019卷 / 19期
关键词
antenna arrays; phased array radar; compressed sensing; array signal processing; MIMO radar; transmitting antennas; parameter estimation; MIMO communication; radar signal processing; estimation performance; sparse targets; phased-MIMO radar; phased-multiple-input multiple-output radar; subarray; waveform diversity; high coherent processing gain; target sparsity; compressed sensing-based estimation method; multiple targets; efficient estimation; noise figure 5; 0; dB;
D O I
10.1049/joe.2019.0172
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation using phased-multiple-input multiple-output (MIMO) radar is investigated in this study, where transmitting antennas are partitioned into subarrays to provide both waveform diversity and high coherent processing gain. By exploiting the target sparsity in the spatial domain, a compressed sensing-based estimation method is proposed to jointly estimate the direction of arrivals and scattering coefficients of multiple targets in phased-MIMO radar. Cramer-Rao lower bound is derived from setting a performance limit on the presented algorithm, and simulation results are provided to validate its efficiency. Numerical examples reveal that efficient estimation can be obtained when the received signal-to-noise ratio exceeds a threshold at the level of about 5dB. Also, the authors also show that the number of subarrays and the size of each subarray constitute a fundamental trade-off in improving the estimation performance.
引用
收藏
页码:6196 / 6200
页数:5
相关论文
共 50 条
  • [1] Lightweight CNNs-Based Interleaved Sparse Array Design of Phased-MIMO Radar
    Cheng, Tianhao
    Wang, Buhong
    Wang, Zhen
    Dong, Runze
    Cai, Bin
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (12) : 13200 - 13214
  • [2] WHY THE PHASED-MIMO RADAR OUTPERFORMS THE PHASED-ARRAY AND MIMO RADARS
    Hassanien, Aboulnasr
    Vorobyov, Sergiy A.
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1234 - 1238
  • [3] Phased-MIMO Radar: A Tradeoff Between Phased-Array and MIMO Radars
    Hassanien, Aboulnasr
    Vorobyov, Sergiy A.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) : 3137 - 3151
  • [4] Transmit beampattern design for airborne phased-MIMO radar
    Dong, Ye
    Cheng, Fengfeng
    Cao, Lanying
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6642 - 6645
  • [5] Optimum Partitioning of a Phased-MIMO Radar Array Antenna
    Alieldin, Ahmed
    Huang, Yi
    Saad, Walid M.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 2287 - 2290
  • [6] Phased-MIMO Radar Using Hadamard Coded Signal
    Tahcfulloh, Syahfrizal
    Hendrantoro, Gamantyo
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET), 2016, : 13 - 16
  • [7] Phased-MIMO Antenna Arrays of Radar System in Detection Performance
    Tahcfulloh, Syahfrizal
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORKS AND SATELLITE (COMNETSAT), 2020, : 117 - 120
  • [8] Enhancing mmWave Radar Sensing Using a Phased-MIMO Architecture
    Zheng, Kai
    Zhao, Wuqiong
    Woodford, Timothy
    Zhao, Renjie
    Zhang, Xinyu
    Hua, Yingbo
    [J]. PROCEEDINGS OF THE 2024 THE 22ND ANNUAL INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS AND SERVICES, MOBISYS 2024, 2024, : 56 - 69
  • [9] Sparse Parameter Estimation and Imaging in mmWave MIMO Radar Systems With Multiple Stationary and Mobile Targets
    Jafri, Meesam
    Srivastava, Suraj
    Anwer, Sana
    Jagannatham, Aditya K.
    [J]. IEEE ACCESS, 2022, 10 : 132836 - 132852
  • [10] Polarization Parameter Estimation of Conformal MIMO Radar Targets
    Wang, Xin
    Zhou, Shenghua
    Liu, Hongwei
    Yan, Junkun
    Su, Hongtao
    Li, Huijing
    Yin, Kuiying
    Sun, Wei
    Zhou, Lin
    [J]. 2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,