A fast particle swarm optimization

被引:0
|
作者
Cui, Zhihua [1 ]
Zeng, Jianchao
Sun, Guoji
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[2] Taiyuan Univ Sci & Technol, Div Syst Simulat & Comp Applicat, Taiyuan 030024, Peoples R China
关键词
particle swarm optimization; random evaluation; self-adaptive threshold; reliability value update strategy; convex combination;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. One main difficulty in applying PSO to real-world applications is that PSO usually need a large number of fitness evaluations before a satisfying result can be obtained. This paper introduces a new "fast particle swarm optimization" (FPSO) that does not evaluate all new positions owning a fitness and associated reliability value of each particle of the swarm and the reliability value is only evaluated using the true fitness function if the reliability value is below a threshold. Moreover, applying random. evaluation, reliability value update and self-adaptive threshold strategies to the FPSO further enhances the performance of the algorithm.
引用
收藏
页码:1365 / 1380
页数:16
相关论文
共 50 条
  • [1] A fast particle swarm optimization for clustering
    Tsai, Chun-Wei
    Huang, Ko-Wei
    Yang, Chu-Sing
    Chiang, Ming-Chao
    [J]. SOFT COMPUTING, 2015, 19 (02) : 321 - 338
  • [2] A Simple and Fast Particle Swarm Optimization
    Wang, Hui
    Wu, Zhijian
    Zeng, Sanyou
    Jiang, Dazhi
    Liu, Yong
    Wang, Jing
    Yang, Xianqiang
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2010, 16 (06) : 611 - 629
  • [3] A fast particle swarm optimization for clustering
    Chun-Wei Tsai
    Ko-Wei Huang
    Chu-Sing Yang
    Ming-Chao Chiang
    [J]. Soft Computing, 2015, 19 : 321 - 338
  • [4] Fast Convergence Particle Swarm Optimization for Functions Optimization
    Sahu, Amaresh
    Panigrahi, Sushanta Kumar
    Pattnaik, Sabyasachi
    [J]. 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 319 - 324
  • [5] Hybridisation of particle swarm optimization and fast evolutionary programming
    He, Jingsong
    Yang, Zhengyu
    Yao, Xin
    [J]. SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 392 - 399
  • [6] Visualizing particle swarm optimization - Gaussian particle swarm optimization
    Secrest, BR
    Lamont, GB
    [J]. PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 198 - 204
  • [7] A Fast Particle Swarm Optimization Algorithm for the Multidimensional Knapsack Problem
    Bonyadi, Mohammad Reza
    Michalewicz, Zbigniew
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [8] Fast Decoding of Convolutional Codes Based on Particle Swarm Optimization
    Huang, Xiaoling
    Zhang, Yujia
    Xu, Jinxue
    Wang, Yongfu
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 7, PROCEEDINGS, 2008, : 619 - 623
  • [9] A Fast Billet Location Algorithm using Particle Swarm Optimization
    Chen, Wei
    Fang, Kangling
    [J]. 2008 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2008, : 1098 - 1102
  • [10] Fast Vanishing Point Estimation Based on Particle Swarm Optimization
    Pan, Xun
    Si, Wa
    Ogai, Harutoshi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (02): : 505 - 513