Geometry and real-analytic integrability

被引:2
|
作者
Butler, L. T. [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
REGULAR & CHAOTIC DYNAMICS | 2006年 / 11卷 / 03期
关键词
geodesic flows; integrable systems; momentum map; real-analytic integrability;
D O I
10.1070/RD2006v011n03ABEH000359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note constructs a compact, real-analytic, riemannian 4-manifold (Sigma, g) with the properties that: (1) its geodesic flow is completely integrable with smooth but not real-analytic integrals; (2) Sigma is diffeomorphic to T-2 x S-2; and (3) the limit set of the geodesic flow on the universal cover is dense. This shows there are obstructions to real-analytic integrability beyond the topology of the configuration space.
引用
收藏
页码:363 / 369
页数:7
相关论文
共 50 条