共 50 条
Mathematical Proceedings of the Cambridge Philosophical Society
被引:2
|作者:
Maier, Helmut
[1
]
Tenenbaum, Gerald
[2
]
机构:
[1] Univ Ulm, Abt Math 3, D-89069 Ulm, Germany
[2] Nancy Univ, CNRS, INRIA, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词:
NORMAL INTEGER;
DIVISORS;
AVERAGE;
D O I:
10.1017/S0305004109002631
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We improve the current upper and lower bounds for the normal order of the Erdos-Hooley Delta-function Delta(n) := sup(u is an element of R) Sigma(d vertical bar n0<log d-u <= 1) 1 (n is an element of N*), obtaining, for almost all integers n, the inequalities (log(2) n)(gamma+0(1)) < Delta(n) < (log(2) n)(log 2+0(1)) where the exponent gamma := (log 2)/log((1 - 1/log 27)/(1 - 1/log 3)) approximate to 0.33827 is conjectured to be optimal.
引用
收藏
页码:513 / 540
页数:28
相关论文