Tweet Analyzer: Identifying Interesting Tweets Based on the Polarity of Tweets

被引:0
|
作者
Raja, M. Arun Manicka [1 ]
Swamynathan, S. [1 ]
机构
[1] Anna Univ, Dept Informat Sci & Technol, Coll Engn Guindy, Chennai 600025, Tamil Nadu, India
关键词
Tweets; Sentiment analysis; Opinion polarity; Classification; Top N tweets;
D O I
10.1007/978-81-322-2734-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sentiment analysis is the process of finding the opinions present in the textual content. This paper proposes a tweet analyzer to perform sentiment analysis on twitter data. The work mainly involves the sentiment analysis process using various trained machine learning classifiers applied on large collection of tweets. The classifiers have been trained using maximum number of polarity oriented words for effectively classifying the tweets. The trained classifiers at sentence level outperformed the keyword based classification method. The classified tweets are further analyzed for identifying top N tweets. The experimental results show that the sentiment analyzer system predicted polarities of tweet and effectively identified top N tweets.
引用
收藏
页码:307 / 316
页数:10
相关论文
共 50 条
  • [1] Tweet Sentiment Analyzer: Sentiment Score Estimation Method for Assessing the Value of Opinions in Tweets
    Raja, Arun Manicka M.
    Swamynathan, S.
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY & COMPUTING, 2016, 2016,
  • [2] Classification of Private Tweets using Tweet Content
    Wang, Qiaozhi
    Bhandal, Jaisneet
    Huang, Shu
    Luo, Bo
    [J]. 2017 11TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2017, : 65 - 68
  • [3] Inferring the Interesting Tweets in Your Network
    Webberley, Will
    Allen, Stuart M.
    Whitaker, Roger M.
    [J]. 2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING (CGC 2013), 2013, : 575 - 580
  • [4] Semantic Classification of Tweets: A Contextual Knowledge based Approach for Tweet Classification
    Nazura, Javed
    Muralidhara, B. L.
    [J]. 2017 8TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS & APPLICATIONS (IISA), 2017, : 184 - 189
  • [5] Identifying emotions in earthquake tweets
    Anthony, Patricia
    Wong, Jennifer Hoi Ki
    Joyce, Zita
    [J]. AI & SOCIETY, 2024,
  • [6] Polarity Detection of Sarcastic Political Tweets
    Tayal, D. K.
    Yadav, Sumit
    Gupta, Komal
    Rajput, Bhawna
    Kumari, Kiran
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2014, : 625 - 628
  • [7] Annotating If Authors of Tweets are Located in the Locations They Tweet About
    Doudagiri, Vivek
    Vempala, Alakananda
    Blanco, Eduardo
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 1776 - 1780
  • [8] Identifying Questions on Turkish Tweets
    Cengiz, Celal
    Diri, Banu
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [9] Identifying Tweets with Fake News
    Krishnan, Saranya
    Chen, Min
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 460 - 464
  • [10] Improved Model for Identifying the Cyberbullying Based on Tweets of Twitter
    Samalo, Darwin
    Martin, Rizky
    Utama, Ditdit Nugeraha
    [J]. Informatica (Slovenia), 2023, 47 (06): : 159 - 164