Improving the Solar Reliability Factor of a Dual-Axis Solar Tracking System Using Energy-Efficient Testing Solutions

被引:4
|
作者
Jurj, Sorin Liviu [1 ]
Rotar, Raul [1 ]
Opritoiu, Flavius [1 ]
Vladutiu, Mircea [1 ]
机构
[1] Politehn Univ Timisoara, Dept Comp & Informat Technol, Fac Automat & Comp, V Parvan Blvd, Timisoara 300223, Romania
关键词
white-box testing; online built-in self-test; flying probe in-circuit testing; jtag boundary scan; solar trackers; solar reliability factor;
D O I
10.3390/en14072009
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an improved mathematical model for calculating the solar test factor (STF) and solar reliability factor (SRF) of a photovoltaic (PV) automated equipment. By employing a unified metrics system and a combined testing suite encompassing various energy-efficient testing techniques, the aim of this paper is to determine a general fault coverage and improve the global SRF of a closed-loop dual-axis solar tracking system. Accelerated testing coupled with reliability analysis are essential tools for assessing the performance of modern solar tracking devices since PV system malfunctioning is directly connected to economic loss, which is an important aspect for the solar energy domain. The experimental results show that the unified metrics system is potentially suitable for assessing the reliability evaluation of many types of solar tracking systems. Additionally, the proposed combined testing platform proves efficient regarding fault coverage (overall coverage of 66.35% for all test scenarios), test time (an average of 275 min for 2864 test cycles), and power consumption (zero costs regarding electricity consumption for all considered test cases) points of view.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On improving the efficiency of hybrid solar lighting and thermal system using dual-axis solar tracking system
    Al-Amayreh, Malik I.
    Alahmer, Ali
    ENERGY REPORTS, 2022, 8 : 841 - 847
  • [2] Enhancing solar energy collection with the implementation of a dual-axis tracking system
    Singh, Rajendra
    Gupta, Sunil Kumar
    Tiwari, Neeraj
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [3] Energy efficient dual axis solar tracking system using IOT
    Muthukumar P.
    Manikandan S.
    Muniraj R.
    Jarin T.
    Sebi A.
    Measurement: Sensors, 2023, 28
  • [4] Design and Implementation of a Dual-Axis Solar Tracking System
    Shang, Huilin
    Shen, Wei
    ENERGIES, 2023, 16 (17)
  • [5] Design and Implementation of the Dual-axis Solar Tracking System
    Zhan, Tung-Sheng
    Lin, Whei-Min
    Tsai, Ming-Huang
    Wang, Guo-Shiang
    2013 IEEE 37TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2013, : 276 - +
  • [6] IoT based dual-axis solar tracking system
    Vinodhkumar, R.
    John, Stalin
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [7] A FPGA Implementation of a Dual-Axis Solar Tracking System
    Shehu, Yusha'u
    Irshaidat, Mae
    Soufian, Majeed
    12TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2019), 2019, : 970 - 974
  • [8] Performance Analysis of Dual-axis Solar Tracking System
    Othman, N.
    Manan, M. I. A.
    Othman, Z.
    Al Junid, S. A. M.
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, : 370 - +
  • [9] Innovative sensorless dual-axis solar tracking system using particle filter
    Pirayawaraporn, Alongkorn
    Sappaniran, Sahapol
    Nooraksa, Sarawin
    Prommai, Chanon
    Chindakham, Nachaya
    Jamroen, Chaowanan
    APPLIED ENERGY, 2023, 338
  • [10] Designing of Dual-axis Solar Tracking System with Remote Monitoring
    Malge, Sangamesh
    Bhole, Kalyani
    Narkhede, Ravi
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INSTRUMENTATION AND CONTROL (ICIC), 2015, : 1524 - 1527