Controllable vapor transport deposition of efficient Sb2(S,Se)3 solar cells via adjusting evaporation source area

被引:11
|
作者
Pan, Yanlin [1 ]
Zheng, Dongliang [1 ]
Chen, Jianxin [1 ]
Zhou, Jun [1 ]
Wang, Rui [2 ]
Pan, Xingyu [2 ]
Hu, Xiaobo [2 ]
Chen, Shaoqiang [2 ]
Yang, Pingxiong [1 ]
Tao, Jiahua [1 ]
Chu, Junhao [1 ,2 ]
机构
[1] East China Normal Univ, Engn Res Ctr Nanophoton & Adv Instrument, Sch Commun & Elect Engn, Sch Phys & Elect Sci,Minist Educ,Key Lab Polar Ma, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Dept Elect Engn, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Vapor transport deposition; Evaporation source area; High efficiency; Sb-2(S; Se)(3) solar cells; SB2SE3; THIN-FILMS; PERFORMANCE; SELENIZATION; GROWTH;
D O I
10.1016/j.jallcom.2022.164320
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The vapor transport deposition (VTD) processing is one of the most promising techniques to fabricate quasi one-dimensional antimony selenosulfide (Sb-2(S,Se)(3)) photovoltaic materials with micrometer-scale grains and preferred crystal orientations. However, current researches rarely involve the effect of evaporation source on the film growth by VTD. Herein, we adopt Sb-2(S,Se)(3) tablets as evaporation sources to develop Sb-2(S,Se)(3) solar cells for the first time. We find that increasing the evaporation source area can effectively improve the deposition rate of Sb-2(S,Se)(3) films, leading to an enhancement of the (221) preferred orientation and columnar large grains of the absorber layers, further improves the device photovoltaic performance. With fine-tuning of the evaporation source area, the optimized Sb-2(S,Se)(3)solar cells show a high efficiency up to 7.6%. This study proposes a unique strategy to improving the quality of low-dimensional materials and a deeper understanding of the growth mechanism via vacuum methods. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth
    Pan, Yanlin
    Hu, Xiaobo
    Guo, Yixin
    Pan, Xingyu
    Zhao, Fei
    Weng, Guoen
    Tao, Jiahua
    Zhao, Chunhu
    Jiang, Jinchun
    Chen, Shaoqiang
    Yang, Pingxiong
    Chu, Junhao
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (28)
  • [2] Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source
    Hu, Xiaobo
    Tao, Jiahua
    Wang, Rui
    Wang, Youyang
    Pan, Yanlin
    Weng, Guoen
    Luo, Xianjia
    Chen, Shaoqiang
    Zhu, Ziqiang
    Chu, Junhao
    Akiyama, Hidefumi
    Journal of Power Sources, 2021, 493
  • [3] Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source
    Hu, Xiaobo
    Tao, Jiahua
    Wang, Rui
    Wang, Youyang
    Pan, Yanlin
    Weng, Guoen
    Luo, Xianjia
    Chen, Shaoqiang
    Zhu, Ziqiang
    Chu, Junhao
    Akiyama, Hidefumi
    JOURNAL OF POWER SOURCES, 2021, 493
  • [4] Temperature sensitivity of adjustable band gaps of Sb2(S, Se)3 solar cells via vapor transport deposition
    Qin, Deyang
    Pan, Xingyu
    Wang, Rui
    Pan, Yanlin
    Wang, Youyang
    Zhang, Jianing
    Ding, Xiaolei
    Chen, Yuhao
    Zheng, Shiqi
    Ye, Shoujie
    Pan, Yuxin
    Weng, Guoen
    Hu, Xiaobo
    Tao, Jiahua
    Zhu, Ziqiang
    Chu, Junhao
    Akiyama, Hidefumi
    Chen, Shaoqiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 263
  • [5] Efficient Sb2(S,Se)3 solar cells via monitorable chemical bath deposition
    Li, Sen
    Lu, Shuaicheng
    Lu, Yue
    Xue, Jiayou
    Li, Kanghua
    Chen, Chao
    Tang, Jiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (21) : 11625 - 11635
  • [6] Vapor Transport Deposition of Sb2(S,Se)3 Solar Cells with Continuously Tunable Band Gaps
    Pan, Yanlin
    Pan, Xingyu
    Wang, Rui
    Hu, Xiaobo
    Chen, Shaoqiang
    Tao, Jiahua
    Yang, Pingxiong
    Chu, Junhao
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7240 - 7248
  • [7] Efficient Sb2(S,Se)3 Solar Modules Enabled by Hydrothermal Deposition
    Han, Wenhao
    Gao, Di
    Tang, Rongfeng
    Ma, Yuyuan
    Jiang, Chenhui
    Li, Gang
    Chen, Tao
    Zhu, Changfei
    SOLAR RRL, 2021, 5 (03)
  • [8] Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2(S,Se)3 solar cells
    Saadat, M.
    Amiri, O.
    SOLAR ENERGY, 2022, 243 : 163 - 173
  • [9] Sb2(Se1-xSx)3 Thin-Film Solar Cells Fabricated by Single-Source Vapor Transport Deposition
    Lu, Shuaicheng
    Zhao, Yang
    Wen, Xixing
    Xue, Ding-Jiang
    Chen, Chao
    Li, Kanghua
    Kondrotas, Rokas
    Wang, Chong
    Tang, Jiang
    SOLAR RRL, 2019, 3 (04)
  • [10] Vapor transport deposited Sb2(S,Se)3 thin film: Effect of deposition temperature and Sb2S3/Sb2Se3 mass ratio
    Zhang, Linrui
    Bai, Xiaotong
    Cui, Xiaorong
    Zhang, Min
    JOURNAL OF CRYSTAL GROWTH, 2023, 622