Permafrost carbon-climate feedbacks accelerate global warming

被引:656
|
作者
Koven, Charles D. [1 ,2 ]
Ringeval, Bruno [1 ]
Friedlingstein, Pierre [3 ]
Ciais, Philippe [1 ]
Cadule, Patricia [1 ]
Khvorostyanov, Dmitry [4 ]
Krinner, Gerhard [5 ]
Tarnocai, Charles [6 ]
机构
[1] CEA, CNRS, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[4] Ecole Polytech, Lab Meteorol Dynam, F-91128 Palaiseau, France
[5] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, Unite Mixte Rech 5183, F-38402 St Martin Dheres, France
[6] Agr & Agri Food Canada, Ottawa, ON K1A 0C5, Canada
关键词
carbon cycle; land surface models; cryosphere; soil organic matter; active layer; SENSITIVITY; CYCLE; UNCERTAINTY; RELEASE; BALANCE; ALASKA; THAW;
D O I
10.1073/pnas.1103910108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60 degrees N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios ( SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41-70 TgCH(4)/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.
引用
收藏
页码:14769 / 14774
页数:6
相关论文
共 50 条
  • [1] Carbon-climate feedbacks accelerate ocean acidification
    Matear, Richard J.
    Lenton, Andrew
    BIOGEOSCIENCES, 2018, 15 (06) : 1721 - 1732
  • [2] Quantifying uncertainties of permafrost carbon-climate feedbacks
    Burke, Eleanor J.
    Ekici, Altug
    Huang, Ye
    Chadburn, Sarah E.
    Huntingford, Chris
    Ciais, Philippe
    Friedlingstein, Pierre
    Peng, Shushi
    Krinner, Gerhard
    BIOGEOSCIENCES, 2017, 14 (12) : 3051 - 3066
  • [3] Past permafrost dynamics can inform future permafrost carbon-climate feedbacks
    Jones, Miriam C. C.
    Grosse, Guido
    Treat, Claire
    Turetsky, Merritt
    Anthony, Katey Walter
    Brosius, Laura
    COMMUNICATIONS EARTH & ENVIRONMENT, 2023, 4 (01):
  • [4] Past permafrost dynamics can inform future permafrost carbon-climate feedbacks
    Miriam C. Jones
    Guido Grosse
    Claire Treat
    Merritt Turetsky
    Katey Walter Anthony
    Laura Brosius
    Communications Earth & Environment, 4
  • [5] Permafrost carbon feedbacks threaten global climate goals
    Natali, Susan M.
    Holdren, John P.
    Rogers, Brendan M.
    Treharne, Rachael
    Duffy, Philip B.
    Pomerance, Rafe
    MacDonald, Erin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (21)
  • [6] High Arctic wetting reduces permafrost carbon feedbacks to climate warming
    Lupascu M.
    Welker J.M.
    Seibt U.
    Maseyk K.
    Xu X.
    Czimczik C.I.
    Nature Climate Change, 2014, 4 (1) : 51 - 55
  • [7] Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic
    Schuur, Edward A. G.
    Abbott, Benjamin W.
    Commane, Roisin
    Ernakovich, Jessica
    Euskirchen, Eugenie
    Hugelius, Gustaf
    Grosse, Guido
    Jones, Miriam
    Koven, Charlie
    Leshyk, Victor
    Lawrence, David
    Loranty, Michael M.
    Mauritz, Marguerite
    Olefeldt, David
    Natali, Susan
    Rodenhizer, Heidi
    Salmon, Verity
    Schaedel, Christina
    Strauss, Jens
    Treat, Claire
    Turetsky, Merritt
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2022, 47 : 343 - 371
  • [8] Mineral Weathering and the Permafrost Carbon-Climate Feedback
    Zolkos, Scott
    Tank, Suzanne E.
    Kokelj, Steven V.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (18) : 9623 - 9632
  • [9] A mathematical model for a positive permafrost carbon-climate feedback
    Sudakov, Ivan
    Vakulenko, Sergey A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (03) : 811 - 824
  • [10] Carbon-climate feedbacks: a review of model and observation based estimates
    Friedlingstein, P.
    Prentice, I. C.
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2010, 2 (04) : 251 - 257