A Note on Constant Mean Curvature Foliations of Noncompact Riemannian Manifolds

被引:0
|
作者
Ilias, S. [1 ]
Nelli, B. [2 ]
Soret, M. [1 ]
机构
[1] Univ Tours, Tours, France
[2] Univ LAquila, Laquila, Italy
关键词
HYPERSURFACES; SURFACES; INEQUALITIES; SPECTRUM;
D O I
10.1155/2022/7350345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We aimed to study constant mean curvature foliations of noncompact Riemannian manifolds, satisfying some geometric constraints. As a byproduct, we answer a question by M. P. do Carmo (see Introduction) about the leaves of such foliations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On mean curvature flow of singular Riemannian foliations: Noncompact cases
    Alexandrino, Marcos M.
    Cavenaghi, Leonardo F.
    Goncalves, Icaro
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 72
  • [2] Constant mean curvature hypersurfaces in Riemannian manifolds
    Pacard, Frank
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2005, 4 : 141 - 162
  • [3] Constant mean curvature spheres in Riemannian manifolds
    Pacard, F.
    Xu, X.
    [J]. MANUSCRIPTA MATHEMATICA, 2009, 128 (03) : 275 - 295
  • [4] Constant mean curvature spheres in Riemannian manifolds
    F. Pacard
    X. Xu
    [J]. manuscripta mathematica, 2009, 128 : 275 - 295
  • [5] A NOTE ON THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS
    Chen Xuzhong
    Shen Yibing
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1053 - 1064
  • [6] A NOTE ON THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS
    陈旭忠
    沈一兵
    [J]. Acta Mathematica Scientia, 2010, 30 (04) : 1053 - 1064
  • [7] Mean curvature of Riemannian foliations
    March, P
    MinOo, M
    Ruh, EA
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01): : 95 - 105
  • [8] Hypersurfaces with constant anisotropic mean curvature in Riemannian manifolds
    Jorge H. S. de Lira
    Marcelo Melo
    [J]. Calculus of Variations and Partial Differential Equations, 2014, 50 : 335 - 364
  • [9] Hypersurfaces with constant anisotropic mean curvature in Riemannian manifolds
    de Lira, Jorge H. S.
    Melo, Marcelo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (1-2) : 335 - 364
  • [10] RIEMANNIAN FOLIATIONS ON MANIFOLDS WITH NONNEGATIVE CURVATURE
    KIM, H
    TONDEUR, P
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 74 (01) : 39 - 45