Multiscale techniques for parabolic equations

被引:23
|
作者
Malqvist, Axel [1 ,2 ]
Persson, Anna [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
[2] Univ Gothenburg, Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
35K05; 35K58; 65M60;
D O I
10.1007/s00211-017-0905-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the local orthogonal decomposition technique introduced in MA<yen>lqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the -norm. We present numerical examples, which confirm our theoretical findings.
引用
收藏
页码:191 / 217
页数:27
相关论文
共 50 条
  • [1] Multiscale techniques for parabolic equations
    Axel Målqvist
    Anna Persson
    [J]. Numerische Mathematik, 2018, 138 : 191 - 217
  • [2] Multiscale methods for parabolic equations with continuum spatial scales
    Jiang, Lijian
    Efendiev, Yalchin
    Ginting, Victor
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (04): : 833 - 859
  • [3] Multiscale homogenization of nonlinear hyperbolic-parabolic equations
    Abdelhakim Dehamnia
    Hamid Haddadou
    [J]. Applications of Mathematics, 2022, 68 : 153 - 169
  • [4] Multiscale homogenization of nonlinear hyperbolic-parabolic equations
    Dehamnia, Abdelhakim
    Haddadou, Hamid
    [J]. APPLICATIONS OF MATHEMATICS, 2022, 68 (02) : 153 - 169
  • [5] Multiscale Galerkin approximation scheme for a system of quasilinear parabolic equations
    Ijioma, Ekeoma R.
    Moore, Stephen E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 1043 - 1065
  • [6] Multiscale Approach to Parabolic Equations Derivation: Beyond the Linear Theory
    Petrov, Pavel S.
    Ehrhardt, Matthias
    Makarov, Denis V.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1823 - 1831
  • [7] Numerical methods for multiscale hyperbolic systems and nonlinear parabolic equations
    Comincioli, V
    Naldi, G
    Pareschi, L
    Toscani, G
    [J]. NUMERICAL ANALYSIS: METHODS AND MATHEMATICAL SOFTWARE, SUPPLEMENT, 2000, 46 : 255 - 266
  • [8] A MULTISCALE APPROACH FOR OPTIMAL CONTROL PROBLEMS OF LINEAR PARABOLIC EQUATIONS
    Cao, Liqun
    Liu, Jianjun
    Allegretto, Walter
    Lin, Yanping
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (06) : 3269 - 3291
  • [9] Multiscale mortar mixed domain decomposition approximations of nonlinear parabolic equations
    Arshad, Muhammad
    Park, Eun-Jae
    Shin, Dongwook
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 : 375 - 385
  • [10] Adaptive Multiscale Model Reduction for Nonlinear Parabolic Equations Using GMsFEM
    Wang, Yiran
    Chung, Eric
    Fu, Shubin
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 : 116 - 132