Design of robust parameter experiments in a continuous space using an evolutionary optimization algorithm

被引:0
|
作者
Santiago, Eduardo [1 ]
机构
[1] Penn State Univ, Dept Ind Engn, University Pk, PA 16802 USA
关键词
D-efficiency; G-efficiency; evolutionary strategy; RPD designs; GENETIC ALGORITHMS; CONSTRUCTION; HYBRID;
D O I
10.1080/00949655.2011.559470
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two common experimental designs used in robust parameter design (RPD) are crossed array and mixed resolution designs. However, the prohibited number of runs, constraints in the design space or special model requirements render some of these designs inadequate. This paper presents the application of an evolutionary strategy to produce nearly optimal design matrices for RPD. The designs are derived by solving a nonlinear optimization problem involving both D- and G-efficiency simultaneously. The methodology presented allows the user to obtain new exact designs for a specific number of runs, and a particular experimental region. The combination of D- and G-efficiency results in experimental designs that outperform the corresponding benchmarks.
引用
收藏
页码:825 / 847
页数:23
相关论文
共 50 条
  • [1] Evolutionary game algorithm for continuous parameter optimization
    Ye, J
    Liu, XD
    Han, L
    [J]. INFORMATION PROCESSING LETTERS, 2004, 91 (05) : 211 - 219
  • [2] Robust parameter design optimization of simulation experiments using stochastic perturbation methods
    Miranda, A. K.
    Del Castillo, E.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2011, 62 (01) : 198 - 205
  • [3] Meta-Optimization of Mind Evolutionary Computation Algorithm Using Design of Experiments
    Sakharov, Maxim
    Karpenko, Anatoly
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'18), VOL 1, 2019, 874 : 473 - 482
  • [4] Optimization Experiments in the Continuous Space The Limited Growth Optimistic Optimization Algorithm
    Mattos, David Issa
    Martensson, Erling
    Bosch, Jan
    Olsson, Helena Holmstrom
    [J]. SEARCH-BASED SOFTWARE ENGINEERING, SSBSE 2018, 2018, 11036 : 293 - 308
  • [5] Quantum-inspired evolutionary algorithm for continuous space optimization
    Li Panchi
    Li Shiyong
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (01) : 80 - 84
  • [6] Reservoir operation using a robust evolutionary optimization algorithm
    Al-Jawad, Jafar Y.
    Tanyimboh, Tiku T.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 197 : 275 - 286
  • [7] Robust parameter design optimization using Kriging, RBF and RBFNN with gradient-based and evolutionary optimization techniques
    Elsayed, Khairy
    Lacor, Chris
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 325 - 344
  • [8] Practical Robust Design Optimization Using Evolutionary Algorithms
    Saha, Amit
    Ray, Tapabrata
    [J]. JOURNAL OF MECHANICAL DESIGN, 2011, 133 (10)
  • [9] Robust Parameter Design With Computer Experiments Using Orthonormal Polynomials
    Tan, Matthias Hwai Yong
    [J]. TECHNOMETRICS, 2015, 57 (04) : 468 - 478
  • [10] Robust design of experiments using constrained stochastic optimization
    Popli, Khushaal
    Prasad, Vinay
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 106 - 111