Fixed points of non-expansive mappings associated with invariant means in a Banach space

被引:6
|
作者
Kang, Jung Im [1 ]
机构
[1] Gyeongsang Natl Univ, Coll Nat Sci, Dept Math & Informat Stat, Chinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
fixed point; non-expansive mapping; invariant mean; amenable;
D O I
10.1016/j.na.2007.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fixed point set of the non-expansive mapping Tit for a Banach space with uniformly Gateaux differentiable norm when mu is a multiplicative left invariant mean on l(infinity) (S). As an application, we establish nonlinear ergodic properties for an extremely amenable semigroup of non-expansive mappings in a Banach space with uniformly Gateaux differentiable norm. Furthermore, we improve a recent result of Atsushiba and Takahashi [S. Atsushiba, W. Takahashi, Weak and strong convergence theorems for non-expansive semigroups in a Banach spaces satisfying Opial's condition, Sci. Math. Jpn. (in press)] on the fixed point set of non-expansive mappings associated with a left invariant mean on a left amenable semigroup. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3316 / 3324
页数:9
相关论文
共 50 条
  • [1] Fixed points for mean non-expansive mappings
    Wu, Chun-xue
    Zhang, Li-juan
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (03): : 489 - 494
  • [2] Fixed Points for Mean Non-expansive Mappings
    Chun-xue Wu Li-juan Zhang Department of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2007, (03) : 489 - 494
  • [3] Fixed Points for Mean Non-expansive Mappings
    Chun-xue Wu
    Li-juan Zhang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2007, 23
  • [4] Fixed points for multivalued non-expansive mappings
    Benavides, T. Domínguez
    Ramírez, P. Lorenzo
    [J]. Applied Set-Valued Analysis and Optimization, 2020, 2 (02): : 143 - 157
  • [5] Porosity phenomena of non-expansive, Banach space mappings
    Michael Dymond
    [J]. Israel Journal of Mathematics, 2023, 255 : 931 - 953
  • [6] Estimating fixed points of non-expansive mappings with an application
    Jubair, Mohd
    Khan, Faizan Ahmad
    Ali, Javid
    Sarac, Yesim
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 9590 - 9601
  • [7] Approximation of fixed points for a new class of generalized non-expansive mappings in Banach spaces
    Abdeljawad, Thabet
    Karaca, Nazli Kadioglu
    Yildirim, Isa
    Mukheimer, Aiman
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 11958 - 11974
  • [8] Porosity phenomena of non-expansive, Banach space mappings
    Dymond, Michael
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2023, 255 (02) : 931 - 953
  • [9] ON NON-EXPANSIVE MAPPINGS OF BANACH SPACES
    EDELSTEIN, M
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (03): : 439 - &
  • [10] ON FIXED-POINTS OF NON-EXPANSIVE PIECEWISE ISOMETRIC MAPPINGS
    LAWRENCE, J
    SPINGARN, JE
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1987, 55 : 605 - 624