Graft weight integration in the early allograft dysfunction formula improves the prediction of early graft loss after liver transplantation

被引:3
|
作者
Manzia, Tommaso Maria [1 ]
Lai, Quirino [2 ,4 ]
Hartog, Hermien [3 ]
Aijtink, Virginia [3 ]
Pellicciaro, Marco [1 ]
Angelico, Roberta [1 ]
Gazia, Carlo [1 ]
Polak, Wojciech G. [3 ]
Rossi, Massimo [2 ]
Tisone, Giuseppe [1 ]
机构
[1] Univ Roma Tor Vergata, Fdn PTV, Dept Surg Sci, UOC Chirurg Epatobiliare & Trapianti, Rome, Italy
[2] Sapienza Univ Rome, Dept Surg & Organ Transplantat, Rome, Italy
[3] Erasmus MC, Dept Surg, Div Hepatopancreatobiliary & Transplant Surg, Univ Med Ctr Rotterdam, Rotterdam, Netherlands
[4] Sapienza Univ Rome, Dept Gen & Specialist Surg, Umberto I Polyclin Rome, Gen Surg & Organ Transplantat Unit, Viale Policlin 155, I-00161 Rome, Italy
关键词
Liver transplantation; Early allograft dysfunction; Graft weight; Graft loss; EXTENDED CRITERIA; DONOR; ALLOCATION; RECIPIENT; PERFUSION; SURVIVAL; MODEL; SCORE;
D O I
10.1007/s13304-022-01270-0
中图分类号
R61 [外科手术学];
学科分类号
摘要
The role of the graft-to-recipient weight ratio (GRWR) in adult liver transplantation (LT) has been poorly investigated so far. The aim is to evaluate the contribution of the GRWR to the well-recognized early allograft dysfunction (EAD) model (i.e., Olthoff model) for the prediction of 90-day graft loss after LT in adults. Three hundred thirty-one consecutive adult patients undergoing LT between 2009 and 2018 at Tor Vergata and Sapienza University in Rome, Italy, served as the Training-Set. The Validation-Set included 123 LTs performed at the Erasmus Medical Center, Rotterdam, the Netherlands. The mEAD model for 90-day graft loss included the following variables: GRWR <= 1.57 = 2.5, GRWR >= 2.13 = 2.5, total bilirubin >= 10.0 mg/dL = 2.0, INR >= 1.60 =2.3, and aminotransferase > 2000 IU/L = 2.2. The mEAD model showed an AUC = 0.74 (95%CI= 0.66-0.82; p < 0.001) and AUC = 0.68 (95%CI= 0.58-0.88; p= 0.01) in the Training-Set and Validation-Set, respectively, outperforming conventional EAD in both cohorts (Training-Set: AUC =0.64, 95%CI = 0.570.72; p= 0.001; Validation-Set: AUC = 0.52, 95%CI= 0.35-0.69, p = 0.87). Incorporation of graft weight in a composite multivariate model allowed for better prediction of patients who presented an aminotransferase peak> 2000 IU/L after LT (OR= 2.39, 95%CI =1.47-3.93, p = 0.0005). The GRWR is important in determining early graft loss after adult LT, and the mEAD model is a useful predictive tool in this perspective, which may assist in improving the graft allocation process.
引用
收藏
页码:1307 / 1316
页数:10
相关论文
共 50 条
  • [1] Graft weight integration in the early allograft dysfunction formula improves the prediction of early graft loss after liver transplantation
    Tommaso Maria Manzia
    Quirino Lai
    Hermien Hartog
    Virginia Aijtink
    Marco Pellicciaro
    Roberta Angelico
    Carlo Gazia
    Wojciech G. Polak
    Massimo Rossi
    Giuseppe Tisone
    [J]. Updates in Surgery, 2022, 74 : 1307 - 1316
  • [2] Risk factors of graft loss in early allograft dysfunction following liver transplantation
    Xie, Q.
    Chen, P.
    Chen, J.
    Yang, Y.
    Yang, Z.
    Liu, J.
    Zheng, S.
    [J]. TRANSPLANTATION, 2018, 102 : 253 - 254
  • [3] Serum glycomics early after liver transplantation relate to graft loss 3 months after liver transplantation independently of early allograft dysfunction
    Xavier, Verhelst
    Geerts, Anja
    Degroote, Helena
    Colman, Roos
    Vanlander, Aude
    de Carvalho, Luis Abreu
    Berrevoet, Frederik
    Meuris, Leander
    Rogiers, Xavier
    Callewaert, Nico
    Van Vlierberghe, Hans
    [J]. JOURNAL OF HEPATOLOGY, 2020, 73 : S286 - S287
  • [4] Early Graft Dysfunction After Liver Transplantation
    Briceno, J.
    Ciria, R.
    [J]. TRANSPLANTATION PROCEEDINGS, 2010, 42 (02) : 631 - 633
  • [5] Early Allograft Dysfunction as a Predictor for Graft and Patient Survival after Liver Transplantation
    Mazilescu, L. I.
    Selzner, N.
    Sapisochin, G.
    Reichman, T.
    Bhat, M.
    Cattral, M.
    Lilly, L.
    McGilvray, I.
    Galvin, Z.
    Ghanekar, A.
    Selzner, M.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 : 1047 - 1048
  • [6] Impact of Early Allograft Dysfunction on Graft and Patient Outcomes After Liver Transplantation
    Guo, Z.
    Zheng, D.
    He, X.
    Chen, G.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2017, 17 : 497 - 497
  • [7] Analysis of the predictive ability for graft loss and mortality of two criteria for early allograft dysfunction after liver transplantation
    Fundora-Suarez, Y.
    Brea-Gomez, E.
    Plata, C.
    Villar-Quintana, R.
    Villegas, M. T.
    Becerra, A.
    Nogueras, M. F.
    Lopez, M. A.
    Espinosa, M. D.
    Villar, J.
    [J]. TRANSPLANTATION, 2018, 102 : 167 - 167
  • [8] Analysis of the Predictive Ability for Graft Loss and Mortality of Two Criteria for Early Allograft Dysfunction After Liver Transplantation
    Brea-Gomez, E.
    Villar-Quintana, R.
    Plata-Illescas, C.
    Zambudio-Carroll, N.
    Lopez-Garrido, M. A.
    Nogueras-Lopez, F.
    Muffak-Granero, K.
    Becerra-Massare, A.
    Villegas-Herrera, M. T.
    Segura Jimenez, I.
    Munoz Perez, N.
    Villar-del-Moral, J. M.
    [J]. TRANSPLANTATION PROCEEDINGS, 2018, 50 (02) : 605 - 609
  • [9] Serum glycomics 7 days after liver transplantation relate to graft loss 3 months after liver transplantation independently of early allograft dysfunction
    Verhelst, X.
    Geerts, A.
    Colman, R.
    Vanlander, A.
    de Carvalho, Abreu L.
    Troisi, R.
    Berrevoet, F.
    Rogiers, X.
    Callewaert, N.
    Van Vlierberghe, H.
    Degroote, H.
    [J]. TRANSPLANTATION, 2021, 105 (08) : 83 - 83
  • [10] Model for early allograft function is predictive of early graft loss in donation after circulatory death liver transplantation
    Richards, James A.
    Sherif, Ahmed E.
    Butler, Andrew J.
    Hunt, Fiona
    Allison, Michael
    Oniscu, Gabriel C.
    Watson, Christopher J. E.
    [J]. CLINICAL TRANSPLANTATION, 2020, 34 (08)