Fluorine-19 Labeling of Stromal Vascular Fraction Cells for Clinical Imaging Applications

被引:33
|
作者
Rose, Laura C. [1 ,2 ,3 ]
Kadayakkara, Deepak. K. [1 ,2 ,3 ,4 ]
Wang, Guan [5 ]
Bar-Shir, Amnon [1 ,2 ,3 ]
Helfer, Brooke M. [9 ]
O'Hanlon, Charles F. [9 ]
Kraitchman, Dara L. [1 ,6 ]
Rodriguez, Ricardo L. [10 ]
Bulte, Jeff W. M. [1 ,2 ,3 ,4 ,7 ,8 ]
机构
[1] Johns Hopkins Univ, Sch Med, Div Magnet Resonance Res, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Cellular Imaging Sect, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Vasc Biol Program, Inst Cell Engn, Baltimore, MD 21205 USA
[4] Johns Hopkins Univ, Sch Med, Dept Oncol, Inst Cell Engn, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Dept Elect & Comp Engn, Baltimore, MD 21205 USA
[6] Johns Hopkins Univ, Sch Med, Dept Mol & Comparat Pathobiol, Baltimore, MD 21205 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] Johns Hopkins Univ, Sch Med, Dept Chem & Biomol Engn, Baltimore, MD 21205 USA
[9] Celsense Inc, Pittsburgh, PA USA
[10] CosmeticSurg LLC, Luthersville, MD USA
关键词
Stromal vascular fraction; Liposuction; Magnetic resonance imaging; Fluorine; Cell tracking; Breast cancer; Radiation-induced fibrosis; NEURAL STEM-CELLS; ADIPOSE-TISSUE; MAGNETIC-RESONANCE; ASSISTED LIPOTRANSFER; MELANOMA PATIENTS; DENDRITIC CELLS; IN-VITRO; TRACKING; TRIAL; TRANSPLANTATION;
D O I
10.5966/sctm.2015-0113
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Stromal vascular fraction (SVF) cells are used clinically for various therapeutic targets. The location and persistence of engrafted SVF cells are important parameters for determining treatment failure versus success. We used the GID SVF-1 platform and a clinical protocol to harvest and label SVF cells with the fluorinated (F-19) agent CS-1000 as part of a first-in-human phase I trial (clinicaltrials.gov identifier NCT02035085) to track SVF cells with magnetic resonance imaging during treatment of radiation-induced fibrosis in breast cancer patients. Flow cytometry revealed that SVF cells consisted of 25.0% 15.8% CD45+, 24.6% +/- 12.5% CD34+, and 7.5% +/- 3.3% CD31+ cells, with 2.1 +/- 0.7 x 10(5) cells per cubic centimeter of adipose tissue obtained. Fluorescent CS-1000 (CS-ATM DM Green) labeled 87.0% +/- 13.5% of CD34+ progenitor cells compared with 47.8% +/- 18.5% of hematopoietic CD45+ cells, with an average of 2.8 +/- 2.0 X 10(12) F-19 atoms per cell, determined using nuclear magnetic resonance spectroscopy. The vast majority (92.7% +/- 5.0%) of CD31+ cells were also labeled, although most coexpressed CD34. Only 16% +/- 22.3% of CD45-/CD31-/CD34- (triple-negative) cells were labeled with CS-ATM DM Green. After induction of cell death by either apoptosis or necrosis, >95% of F-19 was released from the cells, indicating that fluorine retention can be used as a surrogate marker for cell survival. Labeled-SVF cells engrafted in a silicone breast phantom could be visualized with a clinical 3-Tesla magnetic resonance imaging scanner at a sensitivity of approximately 2 x 10(6) cells at a depth of 5 mm. The current protocol can be used to image transplanted SVF cells at clinically relevant cell concentrations in patients.
引用
收藏
页码:1472 / 1481
页数:10
相关论文
共 50 条
  • [1] Labeling Cells Correctly as Stromal Vascular Fraction Matters
    Lee, Jeong Ik
    Lee, Soojung
    Han, Yuna
    Balolong, Ernesto, Jr.
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2017, 33 (08): : 1438 - 1440
  • [2] Stromal vascular fraction technologies and clinical applications
    Andia, Isabel
    Maffulli, Nicola
    Burgos-Alonso, Natalia
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2019, 19 (12) : 1289 - 1305
  • [3] Clinical Cell Therapy Imaging Using a Perfluorocarbon Tracer and Fluorine-19 MRI
    Ahrens, Eric T.
    Helfer, Brooke M.
    O'Hanlon, Charles F.
    Schirda, Claudiu
    MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (06) : 1696 - +
  • [4] Fluorine-19 Magnetic Resonance Imaging of Activated Platelets
    Wang, Xiaowei
    Temme, Sebastian
    Grapentin, Christoph
    Palasubramaniam, Jathushan
    Walsh, Aidan
    Kraemer, Wolfgang
    Kleimann, Patricia
    Havlas, Asli
    Schubert, Rolf
    Schrader, Juergen
    Floegel, Ulrich
    Peter, Karlheinz
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2020, 9 (18):
  • [5] Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic
    van Heeswijk, Ruud B.
    Bauer, Wolfgang R.
    Boenner, Florian
    Janjic, Jelena M.
    Mulder, Willem J. M.
    Schreiber, Laura M.
    Schwitter, Juerg
    Floegel, Ulrich
    CIRCULATION-CARDIOVASCULAR IMAGING, 2023, 16 (09) : e014742
  • [6] TRASTUZUMAB EFFICACY QUANTIFIED BY FLUORINE-19 MAGNETIC RESONANCE IMAGING
    Bartusik-Aebisher, Dorota
    Aebisher, David
    Czmil, Anna
    Mazur, Damian
    ACTA POLONIAE PHARMACEUTICA, 2020, 77 (03): : 495 - 503
  • [7] Amyloid imaging using fluorine-19 magnetic resonance imaging (19F-MRI)
    Tooyama, Ikuo
    Yanagisawa, Daijiro
    Taguchi, Hiroyasu
    Kato, Tomoko
    Hirao, Koichi
    Shirai, Nobuaki
    Sogabe, Takayuki
    Ibrahim, Nor Faeizah
    Inubushi, Toshiro
    Morikawa, Shigehiro
    AGEING RESEARCH REVIEWS, 2016, 30 : 85 - 94
  • [8] Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging
    Fox, Matthew S.
    Gaudet, Jeffrey M.
    Foster, Paula J.
    MAGNETIC RESONANCE INSIGHTS, 2016, 8 : 53 - 67
  • [9] Magnetic resonance imaging and local NMR spectroscopy with fluorine-19 nuclei
    Pirogov Y.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2015, 79 (12) : 1422 - 1426
  • [10] Fluorine-19 magnetic resonance imaging as a method for the individualized theranostic of fluorine labelled drugs in neuroinflammation
    Prinz, C.
    Millward, J. M.
    Pohlmann, A.
    Niendorf, T.
    Waiczies, S.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 719 - 719