A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

被引:49
|
作者
El Soufi, A.
Jazar, M.
Monneau, R.
机构
[1] Univ Tours, CNRS, UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
[2] Lebanese Univ, Dept Math, Beirut, Lebanon
[3] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, France
关键词
semi-linear parabolic equations; blow-up; global existence; asymptotic behavior of solutions; Gamma convergence; Neumann Heat kernel; non-local term; comparison principle;
D O I
10.1016/j.anihpc.2005.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a simple non-local semilinear parabolic equation in a bounded domain with Neumann boundary conditions. We obtain a global existence result for initial data whose L-infinity-norm is less than a constant depending explicitly on the geometry of the domain. A natural energy is associated to the equation and we establish a relationship between the finite-time blow up of solutions and the negativity of their energy. The proof of this result is based on a Gamma-convergence technique. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 50 条
  • [1] Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
    Jazar, M.
    Kiwan, R.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02): : 215 - 218
  • [2] Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term
    Perez-Llanos, Mayte
    Rossi, Julio D.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (04) : 1629 - 1640
  • [3] Numerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions
    Assale, Louis A.
    Boni, Theodore K.
    Nabongo, Diabate
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2008,
  • [4] BLOW-UP FOR A NON-LOCAL DIFFUSION EQUATION WITH EXPONENTIAL REACTION TERM AND NEUMANN BOUNDARY CONDITION
    Zhou, Shouming
    Mu, Chunlai
    Mi, Yongsheng
    Zhang, Fuchen
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2935 - 2946
  • [5] On the blow-up of a non-local parabolic problem
    Kavallaris, N. I.
    Tzanetis, D. E.
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (09) : 921 - 925
  • [6] The blow-up rate for a degenerate parabolic equation with a non-local source
    Deng, WB
    Duan, ZW
    Xie, CH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) : 577 - 597
  • [7] Blow-up for a semilinear non-local diffusion system
    Ferreira, Raul
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [8] THE CONDITIONS FOR BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A DEGENERATE AND SINGULAR PARABOLIC EQUATION WITH A NON-LOCAL SOURCE
    Sukwong, N.
    Sawangtong, W.
    Sawangtong, P.
    [J]. MATEMATICHE, 2021, 76 (01): : 19 - 36
  • [9] Blow-up rates for semilinear parabolic systems with nonlinear boundary conditions
    Wang, MX
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (04) : 543 - 549
  • [10] Blow-up and convergence results for a one-dimensional non-local parabolic problem
    Rougirel, A
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (01): : 93 - 113