Fast evolving multi-layer perceptrons for noisy chaotic time series modeling and predictions

被引:0
|
作者
Zhang, JS [1 ]
Xiao, XC [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Elect Engn, Chengdu 610054, Peoples R China
来源
CHINESE PHYSICS | 2000年 / 9卷 / 06期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fast evolutionary programming (FEP) is proposed to train multi-layer perceptrons (MLP) for noisy chaotic time series modeling and predictions. This FEP, which uses a Cauchy mutation operator that results in a significantly faster convergence to the optimal solution, can help MLP to escape from local minima. A comparison against backpropagation-trained networks was performed. Numerical experimental results show that the FEP can help MLP better capturing dynamics from noisy chaotic time series than the back-propagation algorithm and produce a more consistently modeling and prediction.
引用
收藏
页码:408 / 413
页数:6
相关论文
共 50 条
  • [1] Modeling of ventricular repolarisation time series by multi-layer perceptrons
    El Dajani, R
    Miquel, M
    Forlini, MC
    Rubel, P
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2001, 2101 : 152 - 155
  • [2] EVOLVING RECURRENT PERCEPTRONS FOR TIME-SERIES MODELING
    MCDONNELL, JR
    WAAGEN, D
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (01): : 24 - 38
  • [3] Can periodic perceptrons replace multi-layer perceptrons?
    Racca, R
    [J]. PATTERN RECOGNITION LETTERS, 2000, 21 (12) : 1019 - 1025
  • [4] Multi-Layer Perceptrons for Subvocal Recognition
    Coe, Brian
    [J]. 2017 IEEE 29TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2017), 2017, : 293 - 300
  • [5] ECOC and Boosting with multi-layer perceptrons
    Hauger, S
    Windeatt, T
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 458 - 461
  • [6] Building up Explainability in Multi-layer Perceptrons for Credit Risk Modeling
    Sharma, Rudrani
    Schommer, Christoph
    Vivarelli, Nicolas
    [J]. 2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 761 - 762
  • [7] Phoneme discrimination with functional multi-layer Perceptrons
    Conan-Guez, B
    Rossi, F
    [J]. CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 157 - 165
  • [8] Cooperative coevolution of generalized multi-layer perceptrons
    García-Pedrajas, N
    Ortiz-Boyer, D
    Hervás-Martínez, C
    [J]. NEUROCOMPUTING, 2004, 56 : 257 - 283
  • [9] On Clifford neurons and Clifford multi-layer perceptrons
    Buchholz, Sven
    Sommer, Gerald
    [J]. NEURAL NETWORKS, 2008, 21 (07) : 925 - 935
  • [10] MULTI-LAYER PERCEPTRONS APPLIED TO SPEECH TECHNOLOGY
    MCCULLOCH, N
    AINSWORTH, WA
    LINGGARD, R
    [J]. BRITISH TELECOM TECHNOLOGY JOURNAL, 1988, 6 (02): : 131 - 139