The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes

被引:335
|
作者
Vidal, N
Hedges, SB
机构
[1] Penn State Univ, Res Ctr, Dept Biol & Astrobiol, University Pk, PA 16802 USA
[2] Museum Natl Hist Nat, Dept Systemat & Evolut, UMS 602, F-75005 Paris, France
基金
美国国家科学基金会;
关键词
Sauria; Lepidosauria; Squamata; Lacertilia; Iguania; Scleroglossa; Autarchoglossa; systematics; biogeography; taxonomy; classification; C-mos; RAG1; RAG2; R35; HOXA; 13; JUN; alpha-enolase; amelogenin; MAFB;
D O I
10.1016/j.crvi.2005.10.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Squamate reptiles number approximately 8000 living species and are a major component of the world's terrestrial vertebrate diversity. However, the established relationships of the higher-level groups have been questioned in recent molecular analyses. Here we expand the molecular data to include DNA sequences, totaling 6192 base pairs (bp), from nine nuclear protein-coding genes (C-mos, RAG1, RAG2, R35, HOXA13, JUN, alpha-enolase, amelogenin and MAFB) for 19 taxa representing all major lineages. Our phylogenetic analyses yield a largely resolved phylogeny that challenges previous morphological analyses and requires a new classification. The limbless dibamids are the most basal squamates. Of the remaining taxa (Bifurcata), the gekkonids form a basal lineage. The Unidentata, squamates that are neither dibamids nor gekkonids, are divided into the Scinciformata (scincids, xantusiids, and cordylids) and the Episquamata (remaining taxa). Episquamata includes Laterata (Teiformata, Lacertiformata, and Amphisbaenia, with the latter two joined in Lacertibaenia) and Toxicofera (iguanians, anguimorphs and snakes). Our results reject several previous hypotheses that identified either the varanids, or a burrowing lineage such as amphisbaenians or dibamids, as the closest relative of snakes. Our study also rejects the monophyly of both Scleroglossa and Autarchoglossa, because Iguania, a species-rich lineage (ca. 1440 sp.), is in a highly nested position rather than being basal among Squamata. Thus iguanians should not be viewed as representing a primitive state of squamate evolution but rather a specialized and successful clade combining lingual prehension, dependence on visual cues, and ambush foraging mode, and which feeds mainly on prey avoided by other squamates. Molecular time estimates show that the Triassic and Jurassic (from 250 to 150 Myr) were important times for squamate evolution and diversification. To cite this article: N. Vidal, S.B. Hedges, C R. Biologies 328 (2005). (c) 2005 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:1000 / 1008
页数:9
相关论文
共 50 条
  • [1] The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes
    Vidal, Nicolas
    Delmas, Anne-Sophie
    David, Patrick
    Cruaud, Corinne
    Coujoux, Arnaud
    Hedges, S. Blair
    [J]. COMPTES RENDUS BIOLOGIES, 2007, 330 (02) : 182 - 187
  • [2] Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes
    Ma, K. Y.
    Chan, T. -Y.
    Chu, K. H.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2009, 53 (01) : 45 - 55
  • [3] Novel Approaches for Phylogenetic Inference from Morphological Data and Total-Evidence Dating in Squamate Reptiles (Lizards, Snakes, and Amphisbaenians)
    Pyron, R. Alexander
    [J]. SYSTEMATIC BIOLOGY, 2017, 66 (01) : 38 - 56
  • [4] Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species
    Zheng, Yuchi
    Wiens, John J.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2016, 94 : 537 - 547
  • [5] Molluscan phylogeny investigated using three nuclear protein-coding genes
    Kocot, K. M.
    Halanych, K. M.
    [J]. INTEGRATIVE AND COMPARATIVE BIOLOGY, 2009, 49 : E92 - E92
  • [6] Nuclear protein-coding genes in phylogeny reconstruction and homology assessment: some examples from Leguminosae
    Doyle, JJ
    Doyle, JL
    [J]. MOLECULAR SYSTEMATICS AND PLANT EVOLUTION, 1999, 57 : 229 - 254
  • [7] Phylogenetic relationships of wild silkmoths (Lepidoptera: Saturniidae) inferred from four protein-coding nuclear genes
    Regier, Jerome C.
    Grant, Michael C.
    Mitter, Charles
    Cook, Christopher P.
    Peigler, Richard S.
    Rougerie, Rodolphe
    [J]. SYSTEMATIC ENTOMOLOGY, 2008, 33 (02) : 219 - 228
  • [8] Phylogeny of Decapoda using two nuclear protein-coding genes: Origin and evolution of the Reptantia
    Tsang, L. M.
    Ma, K. Y.
    Ahyong, S. T.
    Chan, T. -Y.
    Chu, K. H.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2008, 48 (01) : 359 - 368
  • [9] Phylogeny of pteromalid parasitic wasps (Hymenoptera: Pteromalidae):: Initial evidence from four protein-coding nuclear genes
    Desjardins, Christopher A.
    Regier, Jerome C.
    Mitter, Charles
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2007, 45 (02) : 454 - 469
  • [10] A novel mitogenomic rearrangement for Odorrana schmackeri (Anura: Ranidae) and phylogeny of Ranidae inferred from thirteen mitochondrial protein-coding genes
    Li, Yongmin
    Zhang, Huabin
    Wu, Xiaoyou
    Xue, Hui
    Yan, Peng
    Wu, Xiaobing
    [J]. AMPHIBIA-REPTILIA, 2014, 35 (03) : 331 - 343