THE SPECTRUM OF CHAOTIC TIME SERIES (I): FOURIER ANALYSIS

被引:7
|
作者
Chen, Goong [1 ,4 ]
Hsu, Sze-Bi [2 ]
Huang, Yu [3 ]
Roque-Sol, Marco A. [4 ]
机构
[1] Texas A&M Univ Qatar, Sci Program, Doha, Qatar
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[3] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
基金
中国国家自然科学基金;
关键词
Li-Yorke chaos; topological entropy; total variation; Sobolev spaces; Fourier coefficients; EXCITATION BOUNDARY-CONDITION; DIMENSIONAL WAVE-EQUATION; ENTROPY; DEFINITION; VIBRATIONS; MAPS;
D O I
10.1142/S0218127411029136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The question of spectral analysis for deterministic chaos is not well understood in the literature. In this paper, using iterates of chaotic interval maps as time series, we analyze the mathematical properties of the Fourier series of these iterates. The key idea is the connection between the total variation and the topological entropy of the iterates of the interval map, from where special properties of the Fourier coefficients are obtained. Various examples are given to illustrate the applications of the main theorems.
引用
收藏
页码:1439 / 1456
页数:18
相关论文
共 50 条
  • [1] THE SPECTRUM OF CHAOTIC TIME SERIES (II): WAVELET ANALYSIS
    Chen, Goong
    Hsu, Sze-Bi
    Huang, Yu
    Roque-Sol, Marco A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05): : 1457 - 1467
  • [2] Time series analysis: the "true" Fourier spectrum derived by iterative process
    Liu, Yi
    Fan, Jun-Hui
    Wang, Hong-Guang
    Yuan, Yu-Hai
    [J]. CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS, 2006, 6 : 353 - 356
  • [3] Chaotic Time Series Analysis
    Liu, Zonghua
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [4] Spectrum calculation of chaotic SPWM signals based on double fourier series
    Liu Yong-Di
    Li Hong
    Zhang Bo
    Zheng Qiong-Lin
    You Xiao-Jie
    [J]. ACTA PHYSICA SINICA, 2014, 63 (07)
  • [5] Chaotic analysis of traffic time series
    Shang, PJ
    Li, XW
    Kamae, S
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 25 (01) : 121 - 128
  • [6] Topological analysis of chaotic time series
    Gilmore, R
    [J]. APPLICATIONS OF SOFT COMPUTING, 1997, 3165 : 243 - 257
  • [7] Wavelet analysis of chaotic time series
    Murguía, JS
    Campos-Cantón, E
    [J]. REVISTA MEXICANA DE FISICA, 2006, 52 (02) : 155 - 162
  • [8] MEASUREMENT OF THE LYAPUNOV SPECTRUM FROM A CHAOTIC TIME-SERIES
    SANO, M
    SAWADA, Y
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (10) : 1082 - 1085
  • [9] Estimation of Lyapunov spectrum and model selection for a chaotic time series
    Li, Qinglan
    Xu, Pengcheng
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (12) : 6090 - 6099
  • [10] A SPECTRUM OF LYAPUNOV EXPONENTS OBTAINED FROM A CHAOTIC TIME SERIES
    严绍瑾
    彭永清
    王建中
    [J]. Journal of Meteorological Research, 1992, (03) : 379 - 385